Abstract
The number of patients with chronic limb-threatening ischemia (CLTI) has been increasing over the years. They are a high-risk group, especially in terms of serious amputations and mortality. Despite numerous recommendations for their management, this remains a difficult task. Decision-making between surgical and endovascular procedures should be clearly established, but there is still no consensus on the best treatment strategy. The purpose of this manuscript is to offer an overview of current management of patients with CLTI, with an emphasis on the concept that evidence-based revascularization can help surgeons provide more appropriate treatment by avoiding erroneous procedures as well as procedures with too high a risk.
References
- Eid M.A., Mehta K.S., Goodney P.P. Epidemiology of peripheral artery disease. Semin. Vasc. Surg. 2021; 34 (1): 38–46. DOI: 10.1053/j. semvascsurg.2021.02.005
- Conte M.S., Bradbury A.W., Kolh P., White J.V., Dick F., Fitridge R. et al. Global vascular guidelines on the management of chronic limb- threatening ischemia. J. Vasc. Surg. 2019; 69 (6S): 3S–125S.e40. DOI: 10.1016/j.jvs.2019.02.016
- Criqui M.H., Aboyans V. Epidemiology of peripheral artery disease. Circ. Res. 2015; 116 (9): 1509–1526. DOI: 10.1161/CIRCRESAHA.116.303849.
- Cecchini A.L., Biscetti F., Rando M.M., Nardella E., Pecorini G., Eraso L.H. et al. Dietary risk factors and eating behaviors in peripheral arterial disease (PAD). Int. J. Mol. Sci. 2022; 23 (18): 10814. DOI: 10.3390/ijms231810814
- Ferreira J.M.M., Cunha P., Carneiro A., Vila I., Cunha C., Silva C. et al. Sarcopenia as a prognostic factor in peripheral arterial disease: descriptive review. Ann. Vasc. Surg. 2021; 74: 460–474. DOI: 10.1016/j.avsg.2021.01.076
- Hsu J., Yang Y., Chuang S., Huang K., Lee J., Lin L. Long‐term visit‐to‐visit glycemic variability as a predictor of major adverse limb and cardiovascular events in patients with diabetes. J. Am. Heart Assoc. 2023; 12: e025438. DOI: 10.1161/JAHA.122.025438
- Saenz-Pipaon G., Martinez-Aguilar E., Orbe J., González Miqueo A., Fernandez-Alonso L., Paramo J.A., Roncal C. The role of circulating biomarkers in peripheral arterial disease. Int. J. Mol. Sci. 2021; 22 (7): 3601. DOI: 10.3390/ijms22073601. Available at: https://www.mdpi.com/1422-0067/22/7/3601 (accessed August 27, 2024).
- Bogucka-Kocka A., Zalewski D.P., Ruszel K.P., Stęp-niewski A., Gałkowski D., Bogucki J. et al. Dys-regulation of microRNA regulatory network in lower extremities arterial disease. Front. Genet. 2019; 10: 1200. DOI: 10.3389/fgene.2019.01200
- Kremers B., Wübbeke L., Mees B., ten Cate H., Spronk H., ten Cate-Hoek A. Plasma biomarkers to predict cardiovascular outcome in patients with peripheral artery disease. Arterioscler. Thromb. Vasc. Biol. 2020; 40 (9): 2018–2032. DOI: 10.1161/ATVBAHA.120.314774
- Reinecke H., Unrath M., Freisinger E., Bunzemeier H., Meyborg M., Lüders F. et al. Peripheral arterial disease and critical limb ischaemia: still poor outcomes and lack of guideline adherence. Eur. Heart J. 2015; 36 (15): 932–938. DOI: 10.1093/eurheartj/ehv006
- Kohn C.G., Alberts M.J., Peacock W.F., Bunz T.J., Coleman C.I. Cost and inpatient burden of peripheral artery disease: findings from the national inpatient sample. Atherosclerosis. 2019; 286: 142–146. DOI: 10.1016/j.atherosclerosis.2019.05.026
- Bauersachs R., Zeymer U., Brière J.-B., Marre C., Bowrin K., Huelsebeck M. Burden of coronary artery disease and peripheral artery disease: a literature review. Cardiovasc. Ther. 2019; 2019: e8295054. DOI: 10.1155/2019/8295054
- Lavery L.A., Oz O.K., Bhavan K., Wukich D.K. Diabetic foot syndrome in the twenty-first century. Сlin. Рodiatr. Med. Surg. 2019; 36 (3): 355–359. DOI: 10.1016/j.cpm.2019.02.002
- Lijmer J.G., Hunink M.G.M., van den Dungen J.J.A.M., Loonstra J., Smit A.J. ROC analysis of noninvasive tests for peripheral arterial disease. Ultrasound in Medicine & Biology. 1996; 22 (4): 391–398. DOI: 10.1016/0301-5629(96)00036-1
- Menard M.T., Farber A., Assmann S.F., Choudhry N.K., Conte M.S. et al. Design and rationale of the best endovascular versus best surgical therapy for patients with critical limb ischemia (BEST‐CLI) Trial. J. Am. Heart Association. 2016; 5 (7). Available at: https://www.ahajournals.org/doi/full/10.1161/JAHA.116.003219 (accessed August 27, 2024).
- Powell R., Menard M., Farber A., Rosenfield K., Goodney P., Gray B. et al. Comparison of specialties participating in the BEST-CLI Trial to specialists trea-ting peripheral arterial disease nationally. J. Vasc. Surg. 2019; 69: 1505–1509. DOI: 10.1016/j.jvs.2018. 08.188
- Martí X., Romera A., Vila R., Cairols M.A. Role of ultrasound arterial mapping in planning therapeutic options for critical ischemia of lower limbs in diabetic patients. Ann. Vasc. Surg. 2012; 26: 1071–1076. DOI: 10.1016/j.avsg.2012.01.019
- Met R., Bipat S., Legemate D.A., Reekers J.A., Koelemay M.J.W. Diagnostic performance of computed tomography angiography in peripheral arterial disease: A systematic review and meta-analysis. JAMA. 2009; 301 (4): 415–424. DOI: 10.1001/jama.301.4.415. Available at: https://jamanetwork.com/journals/jama/article-abstract/183266 (accessed August 27, 2024).
- Mishra A., Jain N., Bhagwat A. CT Angiography of peripheral arterial disease by 256-Slice scanner: accuracy, advantages and disadvantages compared to digital subtraction angiography. Vasc. Endovascular. Surg. 2017; 51 (5): 247–254. DOI: 10.1177/1538574417698906
- Dias-Neto M., Marques C., Sampaio S. Digital subtraction angiography or computed tomography angiography in the preoperative evaluation of lower limb peripheral artery disease – a comparative analysis. Rev. Port. Cir. Cardiotorac. Vasc. 2017; 24 (3–4): 174.
- Oser R.F., Picus D., Hicks M.E., Darcy M.D., Hovsepian D.M. Accuracy of DSA in the evaluation of patency of infrapopliteal vessels. J. Vasc. Interv. Radiol. 1995; 6 (4): 589–594. DOI: 10.1016/S1051-0443 (95)71142-3
- Karim A.M., Li J., Panhwar M.S., Arshad S., Shalabi S., Mena-Hurtado C. et al. Impact of malnutrition and frailty on mortality and major amputation in patients with CLTI. Catheter. Cardiovasc. Interv. 2022; 99 (4): 1300–1309. DOI: 10.1002/ccd.30113
- Jaff M.R., White C.J., Hiatt W.R., Fowkes G.R., Dormandy J., Razavi M. et al. An update on methods for revascularization and expansion of the TASC le-sion classification to include below-the-knee arteries: a supplement to the Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II): The TASC Steering Committee. Ann. Vasc. Dis. 2015; 8 (4): 343–357. DOI: 10.3400/avd.tasc.15- 01000
- Bosanquet D.C., Glasbey J.C.D., Williams I.M., Twine C.P. Systematic review and meta-analysis of direct versus indirect angiosomal revascularisation of infrapopliteal arteries. Eur. J. Vasc. Endovasc. Surg. 2014; 48: 88–97. DOI: 10.1016/j.ejvs.2014.04.002
- Troisi N., Turini F., Chisci E., Ercolini L., Frosini P., Lombardi R. et al. Impact of pedal arch patency on tissue loss and time to healing in diabetic patients with foot wounds undergoing infrainguinal endovascular revascularization. Korean J. Radiol. 2018; 19 (1): 47–53. DOI: 10.3348/kjr.2018.19.1.47
- El Khoury R., Wu B., Kupiec-Weglinski S.A., Dang L.E., Edwards C.T., Lancaster E.M. et al. Applicability of the vascular quality initiative morta-lity prediction model for infrainguinal revascularization in a tertiary limb preservation center population. J. Vasc. Surg. 2022; 76: 505–512.e2. DOI: 10.1016/j.jvs.2022.03.013
- Verwer M.C., Wijnand J.G.J., Teraa M., Gremmels H., Simons J.P., Conte M.S. et al. External validation of the vascular quality initiative prediction model for survival in no-option chronic limb-threatening ischemia patients. J. Vasc. Surg. 2020; 72: 1659–1666.e1. DOI: 10.1016/j. jvs.2020.02.018
- Sibona A., Bianchi C., Leong B., Caputo B., Kohne C., Murga A. et al. A single center’s 15-year experience with palliative limb care for chronic limb threatening ischemia in frail patients. J. Vasc. Surg. 2022; 75 (3): 1014–1020.e1. DOI: 10.1016/j.jvs.2021.09.032
- Melillo E., Micheletti L., Nuti M., Dell’Omo G., Berchiolli R.N., Adami D. et al. Long-term clinical out-comes in critical limb ischemia – a retrospective study of 181 patients. Available at: https://arpi.unipi.it/handle/11568/825084 (accessed August 27, 2024).
- Mills J.L., Conte M.S., Armstrong D.G., Pomposelli F.B., Schanzer A., Sidawy A.N., Andros G. The Society for Vascular Surgery Lower Extremity Threatened Limb Classification System: risk stratification based on Wound, Ischemia, and Foot Infection (WIfI). J. Vasc. Surg. 2014; 59 (1): 220–234.e2. DOI: 10.1016/j.jvs.2013.08.003
- Gabel J., Bianchi C., Possagnoli I., Mehta R., Abou-Zamzam A.M., Teruya T. et al. Multidisciplinary approach achieves limb salvage without revasculariza-tion in patients with mild to moderate ischemia and tissue loss. J. Vasc. Surg. 2020; 71 (6): 2073–2080.e1. DOI: 10.1016/j. jvs.2019.07.103
- Mills J.L. The impact of organized multidisciplinary care on limb salvage in patients with mild to moderate WIfI ischemia grades. J. Vasc. Surg. 2020; 71: 2081–2082. DOI: 10.1016/j.jvs.2019.09.021
- Gupta S.K., Girishkumar H. Lower extremity revascularization. J. Cardiovasc. Surg. (Torino). 1993; 34: 229–236.
- Fabiani I., Calogero E., Pugliese N.R., Di Stefano R., Nicastro I., Buttitta F. et al. Critical limb ischemia: a practical up-to-date review. Angiology. 2018; 69 (6): 465–474. DOI: 10.1177/0003319717739387
- Majmundar M., Patel K.N., Doshi R., Anantha-Narayanan M., Kumar A., Reed G.W. et al. Comparison of 6-month outcomes of endovascular vs surgical revascularization for patients with critical limb ischemia. JAMA Network Open. 2022; 5: e2227746. DOI: 10.1001/jamanetworkopen.2022.27746
- Adam D.J., Beard J.D., Cleveland T., Bell J., Bradbury A.W., Forbes J.F. Bypass versus Angioplasty in severe ischaemia of the leg (BASIL): multicentre, randomised controlled trial. Lancet. 2005; 366 (9501): 1925–1934. DOI: 10.1016/S0140-6736(05)67704-5
- Clinical outcome of surgical endarterectomy for common femoral artery occlusive disease. Available at: https://www.jstage.jst.go.jp/article/circj/80/4/80_CJ-15-1177/_html/-char/en (accessed August 27, 2024).
- Ballotta E., Gruppo M., Mazzalai F., Da Giau G. Common femoral artery endarterectomy for occlusive disease: an 8-year single-center prospective study. Surgery. 2010; 147 (2): 268–274. DOI: 10.1016/j.surg. 2009.08.004
- Dorigo W., Piffaretti G., Benedetto F., Tarallo A., Castelli P., Spinelli F. et al. A comparison between aortobifemoral bypass and aortoiliac kissing stents in patients with complex aortoiliac obstructive disease. J. Vasc. Surg. 2017; 65 (1): 99–107. DOI: 10.1016/j.jvs.2016.06.107
- Bracale U.M., Giribono A.M., Spinelli D., Del Guercio L., Pipitò N., Ferrara D. et al. Long-term results of endovascular treatment of TASC C and D aortoiliac occlusive disease with expanded polytetrafluoroethy-lene stent graft. Ann. Vasc. Surg. 2019; 56: 254–260. DOI: 10.1016/j. avsg.2018.07.060
- Morisaki K., Matsubara Y., Kurose S., Yoshino S., Furuyama T. Bypass surgery provides better outcomes compared with endovascular therapy in the composite endpoint comprising relief from rest pain, wound healing, limb salvage, and survival after infra-inguinal revascularisation in patients with chronic limb threatening ischaemia. Eur. J. Vasc. Endovasc. Surg. 2022; 63 (4): 588–593. DOI: 10.1016/j. ejvs.2021.12.043
- Slim H., Tiwari A., Ritter J.C., Rashid H. Outcome of infra-inguinal bypass grafts using vein conduit with less than 3 millimeters diameter in critical leg ischemia. J. Vasc. Surg. 2011; 53 (2): 421–425. DOI: 10.1016/j.jvs.2010.09.014
- Troisi N., Adami D., Michelagnoli S., Berchiolli R., Accrocca F., Amico A. et al. Factors affecting patency of in situ saphenous vein bypass: two year results from LIMBSAVE (Treatment of Critical Limb Ischaemia with Infragenicular Bypass Adopting in Situ SAphenous VEin Technique) Registry. Eur. J. Vasc. Endovasc. Surg. 2022; 64: 350–358. DOI: 10.1016/j.ejvs.2022.06.004
- McGinigle K.L., Pascarella L., Shortell C.K., Cox M.W., McCann R.L., Mureebe L. Spliced arm vein grafts are a durable conduit for lower extremity bypass. Ann. Vasc. Surg. 2015; 29: 716–721. DOI: 10.1016/j.avsg.2014.11.013
- van Mierlo P.A., Bekkers W.J., van ’t Land F.R., van Mierlo A.G., de Smet A.A., Fioole B. The role of infragenicular spliced vein bypass surgery in patients with chronic limb-threatening ischemia: single center long-term results. J. Cardiovasc. Surg. (Torino). 2019; 60 (6): 686–692. DOI: 10.23736/s0021-9509.19.11110-x
- Armstrong P.A., Bandyk D.F., Wilson J.S., Shames M.L., Johnson B.L., Back M.R. Optimizing infrainguinal arm vein bypass patency with duplex ultrasound surveillance and endovascular therapy. J. Vasc. Surg. 2004; 40: 724–731. DOI: 10.1016/j.jvs.2004.07.037
- Popplewell M.A., Davies H.O.B., Meecham L., Bate G., Bradbury A.W. Comparison of clinical outcomes in patients selected for infra- popliteal bypass or plain balloon angioplasty for chronic limb threatening ischemia between 2009 and 2013. Vasc. Endovasc. Surg. 2021; 55(1): 26–32. DOI: 10.1177/1538574420953949
- Gandini R., Del Giudice C., Simonetti G. Pedal and plantar loop angioplasty: technique and results. J. Cardiovasc. Surg. (Torino). 2014; 55(5): 665–670.
About the authors
- Irina A. Simakova, Postgraduate; ORCID
- Valeriy S. Arakelyan, Dr. Med. Sci., Professor, Head of Department; ORCID
- Vasil G. Papitashvili, Cand. Med. Sci., Leading Researcher, Head of Department; ORCID