Abstract
Heart movements during the heart cycle have a complex and polyhedral structure that includes torsion of the
spirally laid myocardial fiber during the contraction and relaxation. Researchers on an anatomic heart prepa
ration has shown that left ventricle is in fact a single continuous spiral band of myocardium. One of the tech
nical achievements of the 2D and 3D Speckle tracking became the possibility to evaluate real time move
ments of different heart slices along the short axis, that enabled us not only visualize but also evaluate quan
titatively rotation, torsion and twist of the left ventricle. Questions of terminology, sequences of
electro-mechanical activations and hart movements during all phases of the heart cycle are highlighted in the
present article in details. Dynamics of torsion depending on age, influence of the physiological changes
of hemodynamics and load on torsion, rotation and twist with various type of pathology are presented.
Studies of abnormalities of longitudinal, circular, radial functions and torsion give us understanding of the pathophysiological mechanics of left ventricle malfunction, possibility of an early detection of subclinical
stage of systolic and diastolic failure. When left ventricular dilatation is present, myocardium fiber, that is
usually located crosswise, are found to be in more horizontal position. This is followed by the changes of the
circular, longitudinal functions of the left ventricle in addition to torsion disturbance and electromechanical
heart activation that leads to the progression of heart failure. Thus the necessity and relevance of heart move
ment and myocardial function studies is obvious.
References
1.
Lower R.
Tractatus de Corde. London, UK: Oxford
University Press; 1669.
2.
Arts T., Hunter W.C., Douglas A.S.
et al.
Macroscopic three-dimensional motion patterns of
the left ventricle.
Adv. Exp. Med. Biol.
1993; 346:
383-92.
3.
Hansen D.E., Daughters G.T. 2nd, Alderman E.L.
et al. Torsional deformation of the left ventricular
midwall in human hearts with intramyocardial
markers: regional heterogeneity and sensitivity to
the inotropic effects of abrupt rate changes.
Circ.
Res.
1988; 62: 941-52.
4.
BellS.P., NylandL., Tischler M.D.
et al. Alterations
in the determinants of diastolic suction during pa
cing tachycardia.
Circ. Res.
2000; 87: 235-40.
5.
Gorman J.H. 3rd, Gupta K.B., Streicher J.T.
et al.
Dynamic three-dimensional imaging of the mitral
valve and left ventricle by rapid sonomicrometry
array localization.
J. Thorac. Cardiovasc. Surg.
1996; 112: 712-26.
6.
Buchalter M.B., Weiss J.L., Rogers W.J.
et al.
Noninvasive quantification of left ventricular rota
tional deformation in normal humans using mag
netic resonance imaging myocardial tagging.
Circulation.
1990; 81: 1236-44.
7.
Алехин М.Н.
Ультразвуковые методики оценки
деформации миокарда и их клиническое значе
ние. Двухмерное отслеживание пятен серой
шкалы ультразвукового изображения миокарда
в оценке его деформации и скручивания (лек
ция 2).
Ультразвуковая и функциональная диаг
ностика.
2011; 3: 107-20.
8.
Buchalter M.B., Rademakers F.E., Weiss J.L.
et al.
Rotational deformation of the canine left ventricle
measured by magnetic resonance tagging: effects of
catecholamines, ischaemia, and pacing.
Cardiovasc.
Res.
1994; 28: 629-35.
9.
Lorenz C.H., Pastorek J.S., Bundy J.M.
Delineation
of normal human left ventricular twist throughout
systole by tagged cine magnetic resonance imaging.
J. Cardiovasc. Magn. Reson.
2000; 2: 97-108.
10.
Kim H.K., Sohn D.W., Lee S.E.
et al. Assessment of
left ventricular rotation and torsion with two
dimensional speckle tracking echocardiography.
J. Am. Soc. Echocardiogr.
2007; 20: 45-53.
11.
Notomi Y., Lysyansky P., Setser R.M.
et al.
Measurement of ventricular torsion by two-dimen
sional ultrasound speckle tracking imaging.
J. Am.
Coll. Cardiol.
2005; 45: 2034-41.
12.
George R., Sutherland K., Liv Hatle M.
et al.
Doppler myocardial imaging: A textbook. Brussels:
Hasselt; 2006 13.
Mor-Avi V., Lang R.M., Badano L.P.
et al. Current
and evolving echocardiographic techniques for the
quantitative evaluation of cardiac mechanics:
ASE/EAE consensus statement on methodology
and indications endorsed by the Japanese Society of
Echocardiography.
J. Am. Soc. Echocardiogr.
2011;
24 (3): 277-313.
14.
Sengupta P.P., Tajik A.J., Chandrasekaran K.
et al.
Twist mechanics of the left ventricle: principles and
application.
JACC Cardiovasc. Imaging.
2008; 1:
366-76.
15.
Carasso S., Biaggi P., Rakowski H.
et al. Velocity
Vector Imaging: Standard Tissue-Tracking Results
Acquired In Normals — the VVI-STRAIN study.
J. Am. Soc. Echocardiogr.
2012; 25 (5): 543—52.
16.
Ingels N.B. Jr, Hansen D.E., Daughters G.T.
et al.
Relation between longitudinal, circumferential, and
oblique shortening and torsional deformation in the
left ventricle of the transplanted human heart.
Circ.
Res.
1989; 64: 915—27.
17.
Vannan M.A., DeMaria A.N., Narula J.
Of that
Waltz in my heart.
J. Am. Coll. Cardiol.
2007; 49:
917—20.
18.
Yang M., Podszus W.W., Taber L.A.
Mechanics of
ventricular torsion.
J. Biomech.
1996; 29: 745—52.
19.
Sengupta P.P., Khandheria B.K., Korinek J.
et al.
Apex-to-base dispersion in regional timing of left
ventricular shortening and lengthening.
J. Am. Coll.
Cardiol.
2006; 47: 163—72.
20.
Sengupta P.P., Khandheria B.K., Korinek J.
et al.
Left ventricular isovolumic flow sequence during
sinus and paced rhythms: new insights from use of
high-resolution Doppler and ultrasonic digital par
ticle imaging velocimetry.
J. Am. Coll. Cardiol.
2007;
49: 899—908.
21.
Sengupta P.P., Khandheria B.K., Korinek J.
et al.
Biphasic tissue Doppler waveforms during isovolu-
mic phases are associated with asynchronous defor
mation of subendocardial and subepicardial layers.
J. Appl. Physiol.
2005; 99: 1104—11.
22.
Ashikaga H., Coppola B.A., Hopenfeld B.
et al.
Transmural dispersion of myofiber mechanics:
implications for electrical heterogeneity in vivo.
J. Am. Coll. Cardiol.
2007; 49: 909—16.
23.
Sengupta P.P., Korinek J., Belohlavek M.
et al. Left
ventricular structure and function: basic science for
cardiac imaging.
J. Am. Coll. Cardiol.
2006; 48:
1988—2001.
24.
Krishnamoorthy V.K., Korinek J., Sengupta P.P.
Left
ventricular form and function revisited: applied
translational science to cardiovascular ultrasound
imaging.
J. Am. Soc. Echocardiogr.
2007; 20: 539—51.
25.
Rademakers F.E., Buchalter M.B., Rogers W.J.
et al.
Dissociation between left ventricular untwisting and
filling. Accentuation by catecholamines.
Circulation.
1992; 85: 1572—81.
26.
Ashikaga H., Criscione J.C., Omens J.H.
et al.
Transmural left ventricular mechanics underlying
torsional recoil during relaxation.
Am. J. Physiol.
Heart Circ. Physiol.
2004; 286: 640—7.
27.
Veenstra P.C., Reneman R.S., Arts T.
Epicardial defor
mation and left ventricular wall mechanisms during
ejection in the dog.
Am. J. Physiol.
1982; 243: 379—90.
28.
Sideman S., Beyar R.
Left ventricular mechanics
related to the local distribution of oxygen demand
throughout the wall.
Circ. Res.
1986; 58: 664—77 29.
Notomi Y., Srinath G., Shiota T.
et al. Maturational
and adaptive modulation of left ventricular torsional
biomechanics: Doppler tissue imaging observation
from infancy to adulthood.
Circulation.
2006; 113:
2534—41.
30.
Lumens J., Delhaas T., Arts T.
et al. Impaired
subendocardial contractile myofiber function in
asymptomatic aged humans, as detected using
MRI.
Am. J. Physiol. Heart Circ. Physiol.
2006; 291:
1573—9.
31.
Takeuchi M., Nakai H., Kokumai M.
et al. Age-
related changes in left ventricular twist assessed by
two-dimensional speckle-tracking imaging.
J. Am.
Soc. Echocardiogr.
2006; 19: 1077—84.
32.
Dong S.J., Hees P.S., Huang W.M.
et al.
Independent effects of preload, afterload, and con
tractility on left ventricular torsion.
Am. J. Physiol.
1999; 277; 1053—60.
33.
Hansen D.E., Daughters G.T. 2nd, Alderman E.L.
et al. Effect of volume loading, pressure loading,
and inotropic stimulation on left ventricular torsion
in humans.
Circulation.
1991; 83: 1315—26.
34.
MacGowan G.A., Burkhoff D., Rogers W.J.
et al.
Effects of afterload on regional left ventricular tor
sion.
Cardiovasc. Res.
1996; 31: 917—25.
35.
Tyberg J.V., Beyar R., Gibbons Kroeker C.A.
Effects
of load manipulations, heart rate, and contractility
on left ventricular apical rotation. An experimental
study in anesthetized dogs.
Circulation.
1995; 92:
130—41.
36.
Moon M.R., Ingels N.B. Jr., Daughters G.T. 2nd
et al.
Alterations in left ventricular twist mechanics with
inotropic stimulation and volume loading in human
subjects.
Circulation.
1994; 89: 142—50.
37.
Neilan T.G., Ton-Nu T.T., Jassal D.S.
et al.
Myocardial adaptation to short-term high-intensity
exercise in highly trained athletes.
J. Am. Soc.
Echocardiogr.
2006; 19: 1280—5.
38.
Notomi Y., Popovic Z.B., Yamada H.
et al.
Ventricular untwisting: a temporal link between left
ventricular relaxation and suction.
Am. J. Physiol.
Heart Circ. Physiol.
2008; 294: 505—13.
39.
Zocalo Y., Bia D., Armentano R.L.
et al. Assessment
of training-dependent changes in the left ventricle
torsion dynamics of professional soccer players
using speckle-tracking echocardiography.
Conf.
Proc. IEEE Eng. Med. Biol. Soc.
2007; 1: 2709—12.
40.
Хадзегова А.Б., Васюк Ю.А., Ющук Е.Н., Габито
ва Р.Г.
Оценка деформации миокарда с помощью
технологии speckle tracking у больных артериаль
ной гипертензией.
Cердце.
2011; 2 (10): 118—25.
41.
Burns A.T., La Gerche A., Macisaac A.I.
et al.
Augmentation of left ventricular torsion with exer
cise is attenuated with age.
J. Am. Soc. Echocardiogr.
2007; 29: 115—30.
42.
Wang J., Khoury D.S., Yue Y.
et al. Left ventricular
untwisting rate by speckle tracking echocardiogra
phy.
Circulation.
2007; 116: 2580—6.
43.
Takeuchi M., Borden W.B., Nakai H.
et al. Reduced
and delayed untwisting of the left ventricle in
patients with hypertension and left ventricular
hypertrophy: a study using two-dimensional speckle
tracking imaging.
Eur. Heart J.
2007; 28: 2756—62.
44.
Nagel E., Stuber M., Burkhard B.
et al. Cardiac rota
tion and relaxation in patients with aortic valve
stenosis.
Eur. Heart J.
2000; 21: 582—9 45.
Stuber M., Scheidegger M.B., Fischer S.E.
et al.
Alterations in the local myocardial motion pattern
in patients suffering from pressure overload due to
aortic stenosis.
Circulation.
1999; 100: 361—8.
46.
Van der Toorn A., Barenbrug P., Snoep G.
et al.
Transmural gradients of cardiac myofiber shorte
ning in aortic valve stenosis patients using MRI tag
ging.
Am. J. Physiol. Heart Circ. Physiol.
2002; 283:
1609-15.
47.
Young A.A., Kramer C.M., Ferrari V.A.
et al. Three
dimensional left ventricular deformation in hyper
trophic cardiomyopathy.
Circulation.
1994; 90:
854-67.
48.
Carasso S., Yang H., Woo A.
et al. Systolic myocar
dial mechanics in hypertrophic cardiomyopathy:
novel concepts and implications for clinical status.
J. Am. Soc. Echocardiogr.
2008; 130: 115-34.
49.
Notomi Y, Martin-Miklovic M.G., Oryszak S.J.
et al.
Enhanced ventricular untwisting during exercise:
a mechanistic manifestation of elastic recoil
described by Doppler tissue imaging.
Circulation.
2006; 113: 2524-33.
50.
Zhang J.
Myocardial energetics in cardiac hypertro
phy.
Clin. Exp. Pharmacol. Physiol.
2002; 29: 351-9.
51.
Sengupta P.P., Krishnamoorthy V.K., Abhayarat-
na W.
et al. Disparate patterns of left ventricular
mechanics differentiate constrictive pericarditis
from restrictive cardiomyopathy.
J. Am. Coll.
Cardiol. Imaging.
2008; 1: 29-38.
52.
Sekino E , Suzuki S , Momokawa T.
et al. Left ven
tricular function studies in constrictive pericarditis.
Jpn J. Surg.
1978; 8: 186-91.
53.
Pouleur H.
Diastolic dysfunction and myocardial
energetic.
Eur. Heart
J.1990; 11: 30-4.
54.
Abe T., Ohga Y, Tabayashi N.
et al. Left ventricular
diastolic dysfunction in type 2 diabetes mellitus
model rats.
Am. J. Physiol. Heart Circ. Physiol.
2002;
282: 138-48.
55.
Tibayan F.A., Yun K.L., Fann J.I.
et al. Torsion
dynamics in the evolution from acute to chronic mitral
regurgitation.
J. Heart Valve Dis.
2002; 11: 39-46.
56.
TibayanF.A., LaiD.T., Timek T.A.
et al. Alterations
in left ventricular curvature and principal strains in
dilated cardiomyopathy with functional mitral
regurgitation.
J. Heart Valve Dis.
2003; 12: 292-9.
57.
Tibayan F.A., Rodriguez F., Langer F.
et al.
Alterations in left ventricular torsion and diastolic
recoil after myocardial infarction with and without
chronic ischemic mitral regurgitation.
Circulation.
2004; 110: 109-11.
58.
Takeuchi M , Nishikage T., Nakai H.
et al. The
assessment of left ventricular twist in anterior wall
myocardial infarction using two-dimensional
speckle tracking imaging.
J. Am. Soc. Echocardiogr.
2007; 20: 36-44.
59.
Kanzaki H., Nakatani S., Yamada N.
et al. Impaired
systolic torsion in dilated cardiomyopathy: reversal
of apical rotation at mid-systole characterized with
magnetic resonance tagging method.
Basic. Res.
Cardiol.
2006; 101: 465-70.
60.
Greenbaum R.A., Ho S.Y., Gibson D.G.
et al. Left
ventricular fibre architecture in man.
Br. Heart J.
1981; 45 (238-263): 248-63.
61.
Torrent-Guasp F., Kocica M.J., Corno A.
et al.
Systolic ventricular filling.
Eur. J. Cardiothorac.
Surg.
2004; 25: 376-86