Abstract
Surgical treatment of patients with heart diseases with cardiopulmonary bypass (CPB) is associated with the risk of developing perioperative organ damage in them. At the same time, a disorder of the functional state of internal organs causes an increase in the length of stay of patients in the intensive care unit and the probability of a fatal outcome after surgery. Improving approaches to the prevention of organ dysfunction is a fundamentally important task of modern cardioanesthesiology, aimed at improving the safety of patients operated with CPB. This review presents the structure of organ dysfunction and the prevalence of each of its types in the early postoperative period in patients with cardiac surgery. The possibilities of pharmacological organoprotection with halogencontaining volatile anesthetics and levosimendan are described, as well as data from randomized clinical trials and meta-analyses indicating the presence or absence of clinically significant organoprotective properties of these drugs are presented. Alternative approaches to the prevention of organ dysfunction in cardiac surgery patients based on the modification of risk factors for organ damage, optimization of perioperative infusion therapy and improvement of blood circulation monitoring are highlighted.
References
- Rybka M.M. Aspects of mods pathogenesis in cardiac surgery patients. Clinical Physiology of Circulation. 2016; 13 (2): 65–74 (in Russ.).
- Ueki M., Kawasaki T., Habe K., Hamada K., Kawasaki C., Sata T. The effects of dexmedetomidine on inflammatory mediators after cardiopulmonary bypass. Anaesthesia. 2014; 69 (7): 693–700. DOI: 10.1111/anae.12636
- Rosenthal L.-M., Tong G., Wowro S., Walker C., Pfitzer C., Bottcher W. et al. A Prospective clinical trial measuring the effects of cardiopulmonary bypass under mild hypothermia on the inflammatory response and regulation of cold-shock protein RNA-binding motif 3. Ther. Hypothermia Temp. Manag. 2020; 10 (1): 60–70. DOI: 10.1089/ther.2018.0038
- Os D.M.M., van den Brom C.E., van Leeuwen A.L.I., Dekker N.A.M. Microcirculatory perfusion disturbances following cardiopulmonary bypass: a systematic review. Crit. Care. 2020; 24 (1): 218. DOI: 10.1186/s13054-020-02948-w
- Lomivorotov V.V., Efremov S.M., Kirov M.Y., Fominskiy E.V., Karaskov A.M. Low-cardiac-output syndrome after cardiac surgery. J. Cardiothorac. Vasc. Anesth. 2017; 31 (1): 291–308. DOI: 10.1053/j.jvca.2016.05.029
- Epting C.L., McBride M.E., Wald E.L., Costello J.M. Pathophysiology of post-operative low cardiac output syndrome. Curr. Vasc. Pharmacol. 2016; 14 (1): 14–23. DOI: 10.2174/1570161113666151014123718 7. Badenes R., Lozano A., Belda J.F. Postoperative pulmonary dysfunction and mechanical ventilation in cardiac surgery. Crit. Care Res. Pract. 2015: 420513. DOI: 10.1155/2015/420513
- Milot J., Perron J., Lacasse Y., Létourneau L., Cartier P.C., Maltais F. Incidence and predictors of ARDS after cardiac surgery. Chest. 2001; 119 (3): 884–8. DOI: 10.1378/chest.119.3.884
- Chen S.-W., Chang C.-H., Chu P.-H., Chen T.-H., Wu V.C.-C., Huang Y.-K. et al. Risk factor analysis of postoperative acute respiratory distress syndrome in valvular heart surgery. J. Crit. Care. 2016; 31 (1): 139–43. DOI: 10.1016/j.jcrc.2015.11.002
- Che M., Wang X., Liu S., Xie B., Xue S., Yan Y. et al. A clinical score to predict severe acute kidney injury in chinese patients after cardiac Surgery. Nephron. 2019; 142 (4): 291–300. DOI: 10.1159/000499345
- Grayson A.D., Khater M., Jackson M., Fox M.A. Valvular heart operation is an independent risk factor for acute renal failure. Ann. Thorac. Surg. 2003; 75 (6): 1829–35. DOI: 10.1016/s0003-4975(03)00166-8
- Chaudhry R., Zaki J., Wegner R., Pednekar G., Tse A., Sheinbaum R. et al. Gastrointestinal complications after cardiac surgery: A nationwide population-based analysis of morbidity and mortality predictors. J. Cardiothorac. Vasc. Anesth. 2017; 31 (4): 1268–74. DOI: 10.1053/j.jvca. 2017.04.013
- Viana F.F., Chen Y., Almeida A.A., Baxter H.D., Cochrane A.D., Smith J.A. Gastrointestinal complications after cardiac surgery: 10-year experience of a single Australian centre. ANZ J. Surg. 2013; 83 (9): 651–6. DOI: 10.1111/ans.12134
- Sabzi F., Faraji R. Liver function tests following open cardiac surgery. J. Cardiovasc. Thorac. Res. 2015; 7 (2): 49–54. DOI: 10.15171/jcvtr.2015.11
- Diaz G.C., Renz J.F. Cardiac surgery in patients with end-stage liver disease. J. Cardiothorac. Vasc. Anesth. 2014; 28 (1): 155–62. DOI: 10.1053/j.jvca.2012.09.018
- Allen S.J. Gastrointestinal complications and cardiac surgery. J. Extracorpor. Technol. 2014; 46 (2): 142–9.
- Algarni K.D., Maganti M., Yau T.M. Predictors of low cardiac output syndrome after isolated coronary artery bypass surgery: trends over 20 years. Ann. Thorac. Surg. 2011; 92 (5): 1678–84. DOI: 10.1016/j.athoracsur.2011.06.017
- Maganti M., Rao V., Borger M.A., Ivanov J., David T.E. Predictors of low cardiac output syndrome after isolated aortic valve surgery. Circulation. 2005, 30; 112 (9 Suppl.): 1448–52. DOI: 10.11161/CIRCULATIONAHA.104.526087
- Maganti M., Badiwala M., Sheikh A., Scully H., Feindel Ch., David T.E., Rao V. Predictors of low cardiac output syndrome after isolated mitral valve surgery. J. Thorac. Cardiovasc. Surg. 2010; 140 (4): 790–6. DOI: 10.1016/j.jtcvs.2009.11.022
- Perez Vela J.L., Jimenez Rivera J.J., Alcala Llorente M.A., Gonzalez de Marcos B., Torrado H., Garcia Laborda C. et al. Low cardiac output syndrome in the postoperative period of cardiac surgery. Profile, differences in clinical course and prognosis. The ESBAGA study. Med. Intensiva (Engl. Ed.). 2018; 42 (3): 159–67. DOI: 10.1016/j.medin.2017.05.009
- Murry C.E., Jennings R.B., Reimer K.A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986; 74 (5): 1124–36. DOI: 10.1161/01.cir.74.5.1124
- Cason B.A., Gamperl K.A., Slocum R.E., Hickey R.F. Anesthetic-induced preconditioning: Previous administration of isoflurane decreases myocardial infarct size in rabbits. Anesthesiology. 1997; 87: 1182–90. DOI: 10.1097/00000542-199711000-00023
- Kersten J.R., Schmeling T.J., Pagel P.S., Gross G.J., Warltier D.C. Isoflurane mimics ischemic preconditioning via activation of KATPchannels: Reduction of myocardial infarct size with an acute memory phase. Anesthesiology. 1997; 87: 361–70. DOI: 10.1097/00000542-199708000-00024
- Santillo E., Migale M., Massini C., Incalzi R.А. Levosimendan for perioperative cardioprotection: myth or reality? Curr. Cardiol. Rev. 2018; 14 (3): 142–52. DOI: 10.2174/1573403X14666180322104015
- Kalogeris T., Baines C.P., Krenz M., Korthuis R.J. Cell biology of ischemia/reperfusion injury. Int. Rev. Cell. Mol. Biol. 2012; 298: 229–317. DOI: 10.1016/B978-0-12-394309-5.00006-7
- Collard C.D., Gelman S. Pathophysiology, clinical manifestations, and prevention of ischemia-reperfusion injury. Anesthesiology. 2001; 94 (6): 1133–8. DOI: 10.1097/00000542-200106000-00030
- Sedlic F., Pravdic D., Ljubkovic M., Marinovic J., Stadnicka A., Bosnjak Z.J. Differences in production of reactive oxygen species and mitochondrial uncoupling as events in the preconditioning signaling cascade between desflurane and sevoflurane. Anesth. Analg. 2009; 109 (2): 405–11. DOI: 10.1213/ane.0b013e3181a93ad9
- Wang C., Xie H., Liu X., Qin Q., Wu X., Liu H. et al. Role of nuclear factor-κB in volatile anaesthetic preconditioning with sevoflurane during myocardial ischaemia/reperfusion. Eur. J. Anaesthesiol. 2010; 27 (8): 747–56. DOI: 10.1097/EJA.0b013e32833bb3ba
- Annecke T., Chappell D., Chen C., Jacob M., Welsch U., Sommerhoff C.P. et al. Sevoflurane preserves the endothelial glycocalyx against ischaemia-reperfusion injury. Br. J. Anaesth. 2010; 104 (4): 414–21. DOI: 10.1093/bja/aeq019
- Casanova J., Simon C., Vara E., Sanchez G., Rancan L., Abubakra S. et al. Sevoflurane anesthetic preconditioning protects the lung endothelial glycocalyx from ischemia reperfusion injury in an experimental lung autotransplant model. J. Anesth. 2016; 30 (5): 755–62. DOI: 10.1007/s00540-016-2195-0
- Wang J., Zheng H., Chen C.-L., Lu W., Zhang Y.-Q. Sevoflurane at 1 MAC provides optimal myocardial protection during off-pump CABG. Scand. Cardiovasc. J. 2013; 47 (3): 175–84. DOI: 10.3109/14017431.2012.760749
- Zhang Y., Lin W., Shen S., Wang H., Feng X., Sun J. Randomized comparison of sevoflurane versus propofolremifentanil on the cardioprotective effects in elderly patients with coronary heart disease. BMC Anesthesiol. 2017; 17 (1): 104. DOI: 10.1186/s12871-017-0397-0
- Chen S., Lotz C., Roewer N., Broscheit J.-A. Comparison of volatile anesthetic-induced preconditioning in cardiac and cerebral system: molecular mechanisms and clinical aspects. Eur. J. Med. Res. 2018; 23 (1): 10. DOI: 10.1186/s40001-018-0308-y
- Yang X.-L., Wang D., Zhang G.-Y., Guo X.-L. Comparison of the myocardial protective effect of sevoflurane versus propofol in patients undergoing heart valve replacement surgery with cardiopulmonary bypass. BMC Anesthesiol. 2017; 17 (1): 37. DOI: 10.1186/s12871-017- 0326-2
- tepanicheva O.A., Rybka M.M., Khinchagov D.Ya., Mumladze K.V., Lomakin M.V., Loseva A.S., Goncharov A.A., Rogal’skaya E.A. et al. Тhe use of sevofluran as cardioprotector for newborns in transposition of the great arteries correction surgery with cardiopulmonary bypass. Clinical Physiology of Circulation. 2019; 16 (1): 52–62 (in Russ.). DOI: 10.24022/1814-6910-2019-16- 1-52-62
- Landoni G., Greco T., Biondi-Zoccai G., Nigro Neto C., Febres D., Pintaudi M. et al. Anaesthetic drugs and survival: a Bayesian network meta-analysis of randomized trials in cardiac surgery. Br. J. Anaesth. 2013; 111: 886–96. DOI: 10.1093/bja/aet231
- Li F., Yuan Y. Meta-analysis of the cardioprotective effect of sevoflurane versus propofol during cardiac surgery. BMC Anesthesiol. 2015; 15: 128. DOI: 10.1186/s12871-015-0107-8
- Landoni G., Lomivorotov V.V., Nigro Neto C., Monaco F., Pasyuga V.V., Bradic N. et al. Volatile anesthetics versus total intravenous anesthesia for cardiac surgery. N. Engl. J. Med. 2019; 380 (13): 1214–25. DOI: 10.1056/NEJMoa1816476
- Weber C., Esser M., Eghbalzadeh K., Sabashnikov A., Djordjevic I., Maier J. et al. Levosimendan reduces mortality and low cardiac output syndrome in cardiac surgery. Thorac. Cardiovasc. Surg. 2020; 68 (5): 401–9. DOI: 10.1055/s-0039-3400496
- Zhou X., Hu C., Xu Z., Liu P., Zhang Y., Sun L. et al. Effect of levosimendan on clinical outcomes in adult patients undergoing cardiac surgery: a meta-analysis of randomized controlled trials. Interact. Cardiovasc. Thorac. Surg. 2018; 26 (6): 1016–26. DOI: 10.1093/icvts/ivy017
- Harrison R.W., Hasselblad V., Mehta R.H., Levin R., Harrington R.A., Alexander J.H. Effect of levosimendan on survival and adverse events after cardiac surgery: a meta-analysis. J. Cardiothorac. Vasc. Anesth. 2013; 27 (6): 1224–32. DOI: 10.1053/j.jvca.2013.03.027. Epub 2013 Sep 16.
- Chen Q.H., Zheng R.Q., Lin H., Shao J., Yu J.Q., Wang H.L. Effect of levosimendan on prognosis in adult patients undergoing cardiac surgery: a meta-analysis of randomized controlled trials. Crit. Care. 2017; 21 (1): 253. DOI: 10.1186/s13054-017-1848-1
- Tena M.A., Urso S., Gonzalez J.M., Santana L., Sadaba R., Juarez P. et al. Levosimendan versus placebo in cardiac surgery: a systematic review and meta-analysis. Interact. Cardiovasc. Thorac. Surg. 2018; 27 (5): 677–85. DOI: 10.1093/icvts/ivy133
- Cholley B., Caruba T., Grosjean S., Amour J., Ouattara A., Villacorta J. et al. Effect of levosimendan on low cardiac output syndrome in patients with low ejection fraction undergoing coronary artery bypass grafting with cardiopulmonary bypass: The LICORN randomized clinical trial. JAMA. 2017; 318 (6): 548–56. DOI: 10.1001/jama.2017.9973
- Mehta R.H., Leimberger J.D., van Diepen S., Meza J., Wang A., Jankowich R. et al. Levosimendan in patients with left ventricular dysfunction undergoing cardiac surgery. N. Engl. J. Med. 2017; 376 (21): 2032–42. DOI: 10.1056/NEJMoa1616218
- Landoni G., Lomivorotov V.V., Alvaro G., Lobreglio R., Pisano A., Guarracino F. et al. Levosimendan for hemodynamic support after cardiac surgery. N. Engl. J. Med. 2017; 376 (21): 2021–31. DOI: 10.1056/NEJMoa1616325
- Amabili P., Benbouchta S., Roedige L., Senard M., Hubert M.B., Donneau A.-F. et al. Low cardiac output syndrome after adult cardiac surgery: Predictive value of peak systolic global longitudinal strain. Anesth. Analg. 2018; 126 (5): 1476–83. DOI: 10.1213/ANE.0000000000002605
- Okonko D.O., Mandal A.K.J., Missouris C.G., PooleWilson P.A. Disordered iron homeostasis in chronic heart failure: prevalence, predictors, and relation to anemia, exercise capacity, and survival. J. Am. Coll. Cardiol. 2011; 58 (12): 1241–51. DOI: 10.1016/j.jacc.2011.04.040
- Padmanabhan H., Aktuerk D., Brookes M.J., Nevill A.M., Ng A., Cotton J. et al. Anemia in cardiac surgery: next target for mortality and morbidity improvement? Asian Cardiovasc. Thorac. Ann. 2016; 24 (1): 12–7. DOI: 10.1177/0218492315618032
- Miceli A., Romeo F., Glauber M., de Siena P.M., Caputo M., Angelini G.D. Preoperative anemia increases mortality and postoperative morbidity after cardiac surgery. Cardiothorac. Surg. 2014; 9: 137. DOI: 10.1186/1749-8090-9-137
- Deepak B., Balaji A., Pramod A., Sujit K., Savani F., Bapu K. et al. The prevalence and impact of preoperative anemia in patients undergoing cardiac surgery for rheumatic heart disease. J. Cardiothorac. Vasc. Anesth. 2016; 30 (4): 896–900. DOI: 10.1053/j.jvca.2015.10.012
- Rössler J., Schoenrath F., Seifert B., Kaserer A., Spahn G.H., Falk V. et al. Iron deficiency is associated with higher mortality in patients undergoing cardiac surgery: a prospective study. Br. J. Anaesth. 2020; 124 (1): 25–34. DOI: 10.1016/j.bja.2019.09.016
- Puri K., Price J.F., Spinner J.A., Powers J.M., Denfield S.W., Cabrera A.G. et al. Iron deficiency is associated with adverse outcomes in pediatric heart failure. J. Pediatr. 2020; 216: 58–66.e1. DOI: 10.1016/j.jpeds.2019.08.060
- Anker S.D., Comin Colet J., Filippatos G., Willenheimer R., Dickstein K., Drexler H. et al. Ferric carboxymaltose in patients with heart failure and iron deficiency. N. Engl. J. Med. 2009; 361 (25): 2436–48. DOI: 10.1056/NEJMoa0908355
- Spahn D.R., Schoenrath F., Spahn G.H., Seifert B., Stein P., Theusinger O.M. et al. Effect of ultra-shortterm treatment of patients with iron deficiency or anaemia undergoing cardiac surgery: a prospective randomised trial. Lancet. 2019; 393 (10187): 2201–12. DOI: 10.1016/S0140-6736(18)32555-8
- Thomson R., Meeran H., Valencia O., Al-Subaie N. Goal-directed therapy after cardiac surgery and the incidence of acute kidney injury. J. Crit. Care. 2014; 29 (6): 997–1000. DOI: 10.1016/j.jcrc.2014.06.011
- Vretzakis G., Kleitsaki A., Stamoulis K., Bareka M., Georgopoulou S., Karanikolas M. et al. Intra-operative intravenous fluid restriction reduces perioperative red blood cell transfusion in elective cardiac surgery, especially in transfusion-prone patients: a prospective, randomized controlled trial. J. Cardiothorac. Surg. 2010; 5: 7. DOI: 10.1186/1749-8090-5-7
- Li C., Wang H., Liu N., Jia M., Zhang H., Xi X. et al. Early negative fluid balance is associated with lower mortality after cardiovascular surgery. Perfusion. 2018; 33 (8): 630–7. DOI: 10.1177/0267659118780103
- Bellos I., Iliopoulos D.C., Perre D.N. Association of postoperative fluid overload with adverse outcomes after congenital heart surgery: a systematic review and doseresponse meta-analysis. Pediatr. Nephrol. 2020; 35 (6): 1109–19. DOI: 10.1007/s00467-020-04489-4
- Habib R.H., Zacharias A., Schwann T.A., Riordan C.J., Durham S.J., Shah A. Adverse effects of low hematocrit during cardiopulmonary bypass in the adult: should current practice be changed? J. Thorac. Cardiovasc. Surg. 2003; 125 (6): 1438–50. DOI: 10.1016/s0022-5223(02) 73291-1
- Habib R.H., Zacharias A., Schwann T.A., Riordan C.J., Engoren M., Durham S.J. et al. Role of hemodilutional anemia and transfusion during cardiopulmonary bypass in renal injury after coronary revascularization: implications on operative outcome. Crit. Care Med. 2005; 33 (8): 1749–56. DOI: 10.1097/01.ccm.0000171531.06133.b0
- Karkouti K., Beattie W.S., Wijeysundera D.N., Rao V., Chan C., Dattilo K.M. et al. Hemodilution during cardiopulmonary bypass is an independent risk factor for acute renal failure in adult cardiac surgery. J. Thorac. Cardiovasc. Surg. 2005; 129 (2): 391–400. DOI: 10.1016/j.jtcvs.2004.06.028
- Sandrikov V.A., Fedulova S., Kulagina T.Yu., Dzeranova A.N., Khadzhieva D.R. Transesophageal echocardiography in the intraoperative and intensive care periods in cardiac surgery. Анестезиология и реаниматология. 2017; 62 (4): 282–5 (in Russ.). DOI: 10.18821/0201-7563-2017-62-4-282-285
- Michelena H.I., Abel M.D., Suri R.M., Freeman W.K., Click R.L., Sundt T.M. et al. Intraoperative echocardiography in valvular heart disease: an evidence-based appraisal. Mayo Clin. Proc. 2010; 85 (7): 646–55. DOI: 10.4065/mcp.2009.0629
- Nampiaparampil R.G., Swistel D.G., Schlame M., Saric M., Sherrid M.V. Intraoperative two- and threedimensional transesophageal echocardiography in combined myectomy – mitral operations for hypertrophic cardiomyopathy. J. Am. Soc. Echocardiogr. 2018; 31 (3): 275–88. DOI: 10.1016/j.echo.2017.11.016
- Fox J., Glas K., Swaminathan M., Shernan S. The impact of intraoperative echocardiography on clinical outcomes following adult cardiac surgery. Semin. Cardiothorac. Vasc. Anesth. 2005; 9 (1): 25–40. DOI: 10.1177/108925320500900104
- Kubiak G.M., Ciarka A., Biniecka M., Ceranowicz P. Right heart catheterization – background, physiological basics, and clinical implications. J. Clin. Med. 2019; 8 (9): 1331. DOI: 10.3390/jcm8091331
- Giglio M., Dalfino L., Puntillo F., Rubino G. Haemodynamic goal-directed therapy in cardiac and vascular surgery. A systematic review and meta-analysis. Interact. Cardiovasc. Thorac. Surg. 2012; 15 (5): 878–87. DOI: 10.1093/icvts/ivs323
About the authors
Gennadiy V. Yudin, Cand. Med. Sci., Anesthesiologist-Intensivist;
ORCID