Abstract
Objective – to analyze the evolution of approaches to implantation and processing of frameless mitral allograft from the first experiments using cryopreserved allografts to modern concepts of repopulation and decellularization in order to create a single valve framework for growing a “new native valve” on its basis.
Data from Google and PubMed search engines for the queries: “mitral homograft”, “mitral allograft”, “homotransplantations of the mitral valve”, “homograft mitral valve replacement” and others has been analyzed.
This part of the study describes the 2nd and 3rd period: (from 1987 to 2007) – from the invention of a gentle method of biotissue cryopreservation to the successful use of viable stenkess mitral allograft (SMA) for atrioventricular prosthetics in the clinic; the 3rd period (from 2007 to the present) – the improvement of old techniques and the search for new ways to manufacture SMA, their devitalization and subsequent use in the clinic for revitalization. The role of viability preservation in extending the functioning time of SMAs is noted, and various approaches to increasing the reliability of surgical techniques are analyzed. The modern concept of SMA repopulation acceleration, i.e. creation of conditions for formation of a new native valve on the basis of SMA, is reported. L.A. Bokeria, D.V. Britikov and a group of scientists and surgeons from the A.N. Bakoulev National Medical and Research Center of Cardiovascular Surgery were among the first in the world to substantiate this idea in 2007, and in 2017 it was developed by the development of the method of "hybrid decellularization", supplemented with the use of cross-linking agents and "seeding" of the recipient's cells. A.N. Bakulev NMIACCS (Moscow, Russia).
The current trend is to create an immunologically inert, but sufficiently durable SMA framework, on the basis of which a "new native valve" will be re-formed. One of the methods to achieve this goal is decellularization treatment of allografts. Our compatriots take the leading position in this direction.
References
- Bockeria L.A., Tsaregorodtsev A.V., Britikov D.V., Glyantsev S.P. History of development and application of frameless mitral allograft for atrioventricular heart valve prosthetics. Part 1. From experiment to cryopreservation. The Bulletin of Bakoulev Center. Cardiovascular Diseases. 2024; 25 (1): 11–21 (in Russ.). DOI: 10.24022/1810-0694-2024-25-1-11-21
- O’Brien M.F., Stafford G., Gardner M., Pohlner P., McGiffin D., Johnston N. et al. The viable cryopreserved allograft aortic valve. J. Card. Surg. 1987. 2 (1 Suppl): 153–167. DOI: 10.1111/ jocs.1987.2.1s.153
- Bockeria L., Sabirov B., Zaets S. Experience with a newbiological valve: early and midterm results. Abstracts of the third World congress on Heart Disease. Washington, USA; 2003./li>
- Bernal J.M., Rabasa J.M., Cagigas J.C., Val F., Revuelta J.M. Behavior of mitral allografts in the tricuspid position in the growing sheep model. Ann. Thorac. Surg. 1998; 65 (5): 1326–1330.
Hubka M., Siska K., Brozman M., Holec V. Replacement of mitral and tricuspid valves by mitral homograft. J. Thorac. Cardiovasc. Surg. 1966; 51 (2): 195–204.
- Acar C., Tolan M., Berrebi A., Gaer J., Gouezo R., Marchix T. et al. Homograft replacement of the mitral valve. Graft selection, technique of implantation, and results in forty-three patients. J. Thorac. Cardiovasc. Surg. 1996; 111 (2): 367–380. DOI: 10.1016/s0022-5223(96)70446-4
- Pomar J.L., Mestres C.A. Tricuspid valve replacement using a mitral homograft. Surgical
technique and initial results. J. Heart Valve Dis. 1993; 2 (2): 125–128.
- Skopin I.I., Muratov R.M., Shamsiev G.A., Zajcev V.V., Sazonenkov M.A., Soboleva N.N. First case of partial tricuspid valve replacement with cryopreserved mitral allograft in active infective endocarditis. Russian Journal of Thoracic and Cardiovascular Surgery. 2002; 1: 74–76 (in Russ.).
- Skopin I.I., Muratov R.M., Shamsiev G.A., Kambarov S.Yu., Sazonenkov M.A., Zajcev V.V. Use of cryopreserved mitral allografts in the surgery of active IE of the TC. Russian Journal of Thoracic and Cardiovascular Surgery. 1998; 5: 33–39 (in Russ.).
- Kalangos A., Sierra J., Beghetti M., Trigo-Trindade P., Vala D., Christenson J. Tricuspid valve replacement with a mitral homograft in children with rheumatic tricuspid valvulopathy. J. Thorac. Cardiovasc. Surg. 2004; 127 (6): 1682–1687. DOI: 10.1016/j.jtcvs.2003.12.030
- Muratov R.M., Skopin I.I., Shamsiev G.A., Babenko S.I., Soboleva N.N. Results of surgical treatment of active infective endocarditis of atrio-ventricular heart valves. Russian Journal of Thoracic and Cardiovascular Surgery. 2004; 12: 186–189 (in Russ.).
- Cukerman G.I., Skopin I.I., Malashenkov A.I. Reconstructive operations on the tricuspid valve in active infective endocarditis. Russian Journal of Thoracic and Cardiovascular Surgery. 1998; 4: 4–7 (in Russ.).
- Gulbins H., Kreuzer E., Reichart B. Homografts: a review. Expert. Rev. Cardiovasc. Ther.
2003; 1 (4): 533–539. DOI: 10.1586/14779072.1.4.533
- Vetter H., Nerlich A., Welsch U., Liao K., Dagge A., Strenkert C., Reichart B. Total replacement of the mitral apparatus with a stentless, chordally supported mitral valve allograft: an experimental study. J. Thorac. Cardiovasc. Surg. 1996; 111 (3): 595–604. DOI: 10.1016/s0022-
5223(96)70311-2
- Okita Y., Miki S., Ueda Y., Tahata T., Sakai T., Matsuyama K. Mitral valve replacement with a collar-reinforced prosthetic valve for disrupted mitral annulus. Ann. Thorac. Surg. 1995; 59 (1): 187–189. DOI: 10.1016/0003-4975(94)00797-B
- Reardon M.J., Vinnerkvist A., LeMaire S.A. Mitral valve homograft for mitral valve replacement in acute bacterial endocarditis. J. Heart Valve Dis. 1999; 8 (1): 71–73.
- Bockeria L.A., Skopin I.I., Sazonenkov M.A. Cryopre-served mitral allograft in mitral position.
Russian Journal of Thoracic and Cardiovascular Surgery. 2006; 6: 69–71 (in Russ.).
- Zhorzholiani S.T., Mironov A.A., Talygin E.A., Tsygankov Yu.M., Agafonov A.M., Kiknadze
G.I. et al. Analysis of dynamic geometric configuration of the aortic channel from the perspective of tornado-like flow organization of blood flow. Bull. Exp. Biol. Med. 2018; 164: 514–518. DOI: 10.1007/s10517-018-4023-z
- Kumar A.S., Choudhary S.K., Mathur A., Saxena A., Roy R., Chopra P. Homograft mitral valve replacement: five years’ results. J. Thorac. Cardiovasc. Surg. 2000; 120 (3): 450–458. DOI: 10.1067/ mtc.2000.107829
- Obadia J.F., Raisky O., Sebbag L., Chocron S., Saroul C., Chassignolle J.F. Monobloc aorto- mitral homograft as a treatment of complex cases of endocarditis. J. Thorac. Cardiovasc. Surg. 2001; 121 (3): 584–586. DOI: 10.1067/mtc.2001.111375
- Mestres C.A., Castellá M., Moreno A., Paré J.C., del Rio A., Azqueta M. et al. Cryopreserved mitral homo-graft in the tricuspid position for infective endocarditis: a valve that can be repaired in the long- term (13 years). J. Heart Valve Dis. 2006; 15 (3): 389–391.
- Fassa A.A., Himbert D., Brochet E., Labbé J.P., Vahanian A. Transfemoral valve-in-ring implantation for a failing mitral homograft in the tricuspid position. EuroIntervention. 2014; 10 (2): 269. DOI: 10.4244/EIJV10I2A43
- Pighi M., Pilati M., Pesarini G., Mammone C., Gottin L., Luciani G.B. et al. Transcatheter valve-in-mitral homograft in tricuspid position: first-in-human report. Can. J. Cardiol. 2020; 36 (10): 1690. e9–1690.e11. DOI: 10.1016/j.cjca.2020.04.027
- Cebotari S., Mertsching H., Kallenbach K., Kostin S., Repin O., Batrinac A. et al. Construction of autologous human heart valves based on an acellular allograft matrix. Circulation. 2002; 106 (12 Suppl 1): I63–I68. DOI: 10.1161/01.CIR.0000032900.55215.85
- Boсkeria L.A., Podzolkov V.P., Astrakhantseva T.O., Kokshenev I.V., Britikov D.V., Fadeev A.A. et al. Results of congenital heart diseases correction by means of bioprostheses from Glisson’s bovine capsule. Russian Journal of Thoracic and Cardiovascular Surgery. 2018; 60 (1): 44–54 (in Russ.). DOI: 10.24022/0236-2791-2018-60-1-44-54
- Sachkov A.S., Muratov R.M., Britikov D.V., Akatov V.S., Bockeria L.A. Experimental evaluation of devitalized cryopreserved allogenic and xenogenic tissue in comparison with traditional tissue. The Bulletin of Bakoulev Center. Cardiovascular Diseases. 2009; 10 (6): 49–57.
- Fadeeva I.S., Sorkomov M.N., Zvyagina A.I., Britikov D.V., Sachkov A.S., Evstratova Ya.V. et al. Study of biointegration and elastic-strength properties of a new xenopericardium-based biomaterial for reconstructive cardiovascular surgery. Bull. Exp. Biol. Med. 2019; 167 (4): 496–499. DOI: 10.1007/s10517-019-04558-1
- Iablonskii P., Cebotari S., Ciubotaru A., Sarikouch S., Hoeffler K., Hilfiker A. et al. Decellularized mitral valve in a long-term sheep model. Eur. J. Cardiothorac. Surg. 2018; 53 (6): 1165– 1172. DOI: 10.1093/ejcts/ezx485
- Muratov R., Britikov D., Sachkov A., Akatov V., Soloviev V., Fadeeva I., Bockeria L. New approach to reduce allograft tissue immunogenicity. Experimental data. Interact. Cardiovasc. Thorac. Surg. 2010; 10 (3): 408–412. DOI: 10.1510/icvts.2009.216549
- Cebotari S., Tudorache I., Ciubotaru A., Boethig D., Sarikouch S., Goerler A. et al. Use of fresh decellularized allografts for pulmonary valve replacement may reduce the reoperation rate in children and young adults: early report. Circulation. 2011; 124 (11 Suppl): S115–123. DOI: 10.1161/ CIRCULATIONAHA.110.012161
- Neumann A., Cebotari S., Tudorache I., Haverich A., Sarikouch S. Heart valve engineering: decellularized allograft matrices in clinical practice. Biomed. Tech. (Berl). 2013; 58 (5): 453–456. DOI: 10.1515/bmt-2012-0115
- Robicsek F., Sanger P.W., Taylor F.H., Robicsek L. Transplantability of heart valves. Arch. Surg. 1962; 84: 141–148. DOI: 10.1001/archsurg.1962.01300190145018
About the authors
- Leo A. Bockeria, Academician of the Russian Academy of Sciences, President of Center; ORCID
- Anton V. Tsaregorodtsev, Student; ORCID
- Dmitriy V. Britikov, Dr. Med. Sci., Leading Researcher; ORCID
- Sergey P. Glyantsev, Dr. Med. Sci., Professor, Chief Researcher; ORCID