Abstract
Currently, echocardiography is the main diagnostic tool for noninvasive imaging of heart diseases in cardiology and cardiac surgery. Ultrasound images play important role in treatment strategy choice. Since when the ultrasound imaging technology gave the first visualization of the human heart, diagnostic capabilities have improved due to the development of methods for obtaining and processing the information. One of the most significant advances is
3D-visualization introduction and its evolution from autonomous, manual and operator-dependent reconstruction to volumetric visualization in real time. Technical improvement and computing power increase of ultrasound devices suggest an effective integration of the method into routine clinical practice. The main advantage of 3D-imaging is an accurate and unique 360-degree view of the heart valves and chambers. Improving the accuracy of echocardiographic assessment is achieved by eliminating the need for geometric modeling and the limits of 2D-imaging. In addition, 3D-imaging is extremely useful in intraoperative and postoperative process for real-time assessment of the surgical intervention's effectiveness. We perform the literature review that has provided the scientific basis for the clinical use of 3D cardiac ultrasound imaging for quantitative and qualitative assessment of heart chambers and valves.
References
- Jiang L., Morrissey R., Handschumacher M.D., Vazquez de Prada J.A., He J., Picard M.H. et al. Quantitative three-dimensional reconstruction of left ventricular volume with complete borders detected by acoustic quantification underestimates volume. Am. Heart J. 1996; 131: 553–9. DOI: 10.1016/s0002-8703(96)90536-0
- Rybakova M.K., Mit'kov V.V. Three-dimensional and four-dimensional echocardiography. Clinical possibilities of the method. Consilium Medicum. 2015; 17 (5): 80–4 (in Russ.).
- Lang R.M., Addetia K., Narang A. 3Dimensional echocardiography: latest developments and future directions. JACC: Cardiovasc. Imaging. 2018; 11 (12): 201. DOI: 10.1016/j.jcmg.2018.06.024
- Sköldborg V., Madsen P.L., Dalsgaard M., Abdulla J. Quantification of mitral valve regurgitation by 2D and 3D echocardiography compared with cardiac magnetic resonance a systematic review and meta-analysis. Int. J. Cardiovasc. Imaging. 2020; 36 (2): 279–89. DOI: 10.1007/s10554-019-01713-7. Epub 2019 Oct 29
- Golukhova E.Z., Mashina T.V., Dzhanketova V.S., Mrikaev D.V. Three-dimensional transesophageal echocardiography in the diagnosis of mitral valve diseases. Russian Electronic Journal of Radiology. 2019; 9 (3): 49–57 (in Russ.). DOI: 10.21569/2222-7415-2019-9-3- 49-57
- Tolstikhina A.A., Mashina T.V., Mrikaev D.V., Dzhanketova V.S., Gromova O.I., Golukhova E.Z. Possibilities of the mitral valve quantification method in cardiac surgery. Almanac of Clinical Medicine. 2017; 45 (8): 635–43 (in Russ.). DOI: 10.18786/2072-0505-2017-45-8-635-643
- Chandra S., Salgo I.S., Sugeng L., Weinert L., Tsang W., Takeuchi M. et al. Characterization of degenerative mitral valve disease using morphologic analysis of realtime three-dimensional echocardiographic images: objective insight into complexity and planning of mitral valve repair. Circ. Cardiovasc. Imaging. 2011; 4 (1): 24–32. DOI: 10.1161/CIRCIMAGING.109.924332. Epub 2010 Sep 30.
- Ludomirsky A., Vermilion R., Nesser J., Marx G., Vogel V., Derman R. et al. Transthoracic real-time threedimensional echocardiography using the rotational scanning approach for data acquisition. Echocardiography. 1994; 11: 599–606. DOI: 10.1111/j.1540-8175.1994. tb01104.x
- Roelandt J., Salustri A., Mumm B., Vletter W. Precordial threedimensional echocardiography with a rotational imaging probe: methods and initial clinical experience. Echocardiography. 1995; 12: 243–52.
- Pushparajah K., Barlow A., Tran V.-H., Miller O.I., Zidere V., Vaidyanathan B. et al. A systematic threedimensional echocardiographic approach to assist surgical planning in double outlet right ventricle. Echocardiography. 2013; 30: 234–8.
- German C., Nanda N.C. Three-dimensional echocardiographic assessment of atrial septal defects. Ann. Card. Anaesth. 2015; 18 (1): 69–73. DOI: 10.4103/0971-9784.148324
- Bechis M.Z., Rubenson D.S., Price M.J. Imaging assessment of the interatrial septum for transcatheter atrial septal defect and patent foramen ovale closure. Interv. Cardiol. Clin. 2017; 6 (4): 505–24. DOI: 10.1016/j.iccl. 2017.05.004
- Feng R., Saraf R., Shapeton A., Matyal R., Laham R., Mahmood F. A complex atrial septal defect and threedimensional echocardiography: A question and an answer. J. Cardiothorac. Vasc. Anesth. 2016; 30 (4): 1050–2. DOI: 10.1053/j.jvca.2015.09.027. Epub 2015 Oct 1.
- Cheng T.O., Xie M.X., Wang X.F., Wang Y., Lu Q. Realtime 3-dimensional echocardiography in assessing atrial and ventricular septal defects: an echocardiographic-surgical correlative study. Am. Heart J. 2004; 148: 1091–5.
- Barrea C., Levasseur S., Roman K., Nii M., Coles J.G., Williams W.G., Smallhorn J.F. Three-dimensional echocardiography improves the understanding of left atrioventricular valve morphology and function in atrioventricular septal defects undergoing patch augmentation. J. Thorac. Cardiovasc. Surg. 2005; 129 (4): 746–53. DOI: 10.1016/j.jtcvs.2004.07.023
- Toh N., Kanzaki H., Nakatani S., Kohyama K., Ohara T., Kim J. et al. Partial atrioventricular septal defect assessed by real-time three-dimensional echocardiography: a case report. J. Cardiol. 2007; 50 (6): 379–82.
- Cheng H.L., Huang C.H., Tsai H.E., Chen M.Y., Fan S.Z., Hsiao P.N. Intraoperative assessment of partial atrioventricular septal defect with a cleft mitral valve by real-time three-dimensional transesophageal echocardiography. Anesth. Analg. 2012; 114 (4): 731–4. DOI: 10.1213/ANE.0b013e3182468db3. Epub 2012 Feb 17.
- Cognet T., Séguéla P.E., Thomson E., Bouisset F., Lairez O., Hascoёt S. et al. Assessment of valvular surfaces in children with a congenital bicuspid aortic valve: preliminary three-dimensional echocardiographic study. Arch. Cardiovasc. Dis. 2013; 106 (5): 295–302. DOI: 10.1016/j.acvd.2012.11.005. Epub 2013 Mar 11.
- Ahmed M.I., Escañ uela M.G., Crosland W.A., McMahon W.S., Alli O.O., Nanda N.C. Utility of live/real time three-dimensional transesophageal echocardiography in the assessment and percutaneous intervention of bioprosthetic pulmonary valve stenosis. Echocardiography. 2014; 31 (4): 531–3. DOI: 10.1111/echo.12551. Epub 2014 Mar 20.
- Taha F., Elshedoudy S. Role of 3D transesophageal echocardiography in transcatheter closure of atrial septal aneurysms. Echocardiography. 2019; 36 (10): 1884–94. DOI: 10.1111/echo.14482. Epub 2019 Sep 21.
- Li X., Shiota T., Delabays A., Teien D., Zhou X., Sinclair B. et al. Flow convergence flow rates from 3-dimensional reconstruction of color Doppler flow maps for computing transvalvular regurgitant flows without geometric assumptions: An in vitro quantitative flow study. J. Am. Soc. Echocardiogr. 1999; 12 (12): 1035–44. DOI: 10.1016/s0894-7317(99)70099-4
- Sugeng L., Spencer K.T., Mor-Avi V., DeCara J.M., Bednarz J.E., Weinert L. et al. Dynamic three-dimensional color flow Doppler: an improved technique for the assessment of mitral regurgitation. Echocardiography. 2003; 20 (3): 265–73. DOI: 10.1046/j.1540-8175.2003. 03024.x
- Bockeria L.A., Bockeria O.L., Klimchuk I.Ya., Mironenko M.Yu., Shvarts V.A. Assessment of the morphometric parameters of the mitral valve in the surgical treatment of atrial fibrillation. Annals of Arrithmology. 2016; 13 (4): 192–203 (in Russ.). DOI: 10.15275/annaritmol. 2016.4.1
- Shiota T., McCarthy P.M., White R.D., Qin J.X., Greenberg N.L., Flamm S.D. et al. Initial clinical experience of real-time three-dimensional echocardiography in patients with ischemic and idiopathic dilated cardiomyopathy. Am. J. Cardiol. 1999; 84 (9): 1068–73. DOI: 10.1016/s0002-9149(99)00500-7
- Mondelli J.A., Di Luzio S., Nagaraj A., Kane B.J., Smulevitz B., Nagaraj A.V. et al. The validation of volumetric real-time 3-dimensional echocardiography for the determination of left ventricular function. J. Am. Soc. Echocardiogr. 2001; 14 (10): 994–1000. DOI: 10.1067/mje.2001.115770
- Otani K., Nakazono A., Salgo I.S., Lang R.M., Takeuchi M. Three-dimensional echocardiographic assessment of left heart chamber size and function with fully automated quantification software in patients with atrial fibrillation. J. Am. Soc. Echocardiogr. 2016; 29: 955–65.
- Bernard A., Addetia K., Dulgheru R., Caballero L., Sugimoto T., Akhaladze N. et al. 3D echocardiographic reference ranges for normal left ventricular volumes and strain: results from the EACVI NORRE study. Eur. Heart J. Cardiovasc. Imaging. 2017; 18 (4): 475–83. DOI: 10.1093/ehjci/jew28437
- Bleakley C., Monaghan M. 3D transesophageal echocardiography in TAVR. Echocardiography. 2020; 37 (10): 1654–64. DOI: 10.1111/echo.1477
- Jacobs L.D., Salgo I.S., Goonewardena S., Weinert L., Coon P., Bardo D. et al. Rapid online quantification of left ventricular volume from real-time three-dimensional echocardiographic data. Eur. Heart J. 2006; 27 (4): 460–8. DOI: 10.1093/eurheartj/ehi666. Epub 2005 Nov 30.
- Thavendiranathan P., Grant A.D., Negishi T., Plana J.C., Popovic Z.B., Marwick T.H. Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes: application to patients undergoing cancer chemotherapy. J. Am. Coll. Cardiol. 2013; 61: 77–84.
- Lang R.M., Badano L.P., Mor-Avi V., Afilalo J., Armstrong A., Ernande L. et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015; 28 (1): 1–39.e14. DOI: 10.1016/j.echo.2014.10.003
- Muraru D., Hahn R.T., Soliman O.I., Faletra F.F., Basso C., Badano L.P. 3-Dimensional echocardiography in imaging the tricuspid valve. JACC Cardiovasc. Imaging. 2019; 12 (3): 500–15. DOI: 10.1016/j.jcmg.2018.10.035
- Fang L., Hsiung M.C., Miller A.P., Nanda N.C., Yin W.H., Young M.S. et al. Assessment of aortic regurgitation by live three-dimensional transthoracic echocardiographic measurements of vena contracta area: usefulness and validation. Echocardiography. 2005; 22 (9): 775–81. DOI: 10.1111/j.1540-8175.2005.00171.x
- Berdejo J., Shiota M., Mihara H., Itabashi Y., Utsunomiya H., Shiota T. Vena contracta analysis by color Doppler three-dimensional transesophageal echocardiography shows geometrical differences between prolapse and pseudoprolapse in eccentric mitral regurgitation. Echocardiography. 2017; 34 (5): 683–9. DOI: 10.1111/echo.13508. Epub 2017 Mar 19.
- Pickett C.A., Cheezum M.K., Kassop D., Villines T.C., Hulten E.A. Accuracy of cardiac CT, radionucleotide and invasive ventriculography, two- and three- dimensional echocardiography, and SPECT for left and right ventricular ejection fraction compared with cardiac MRI: a meta-analysis. Eur. Heart J. Cardiovasc. Imaging. 2015; 16: 848–52.
- Tsang W., Salgo I.S., Medvedofsky D., Takeuchi M., Prater D., Weinert L. et al. Transthoracic 3D echocardiographic left heart chamber quantification using an automated adaptive analytics algorithm. JACC Cardiovasc. Imaging. 2016; 9 (7): 769–82. DOI: 10.1016/j.jcmg.2015.12.020. Epub 2016 Jun 15.
- Medvedofsky D., Mor-Avi V., Amzulescu M., Fernández-Golfín C., Hinojar R., Monaghan M.J. et al. Threedimensional echocardiographic quantification of the leftheart chambers using an automated adaptive analytics algorithm: multicentre validation study. Eur. Heart J. Cardiovasc. Imaging. 2018; 19 (1): 47–58. DOI: 10.1093/ehjci/jew328
- Mor-Avi V., Lang R.M., Badano L.P., Belohlavek M., Cardim N.M., Derumeaux G. et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. J. Am. Soc. Echocardiogr. 2011; 24 (3): 277–313. DOI: 10.1016/j.echo.2011.01.015
- Maffessanti F., Nesser H.J., Weinert L., SteringerMascherbauer R., Niel J., Gorissen W. et al. Quantitative evaluation of regional left ventricular function using three-dimensional speckle tracking echocardiography in patients with and without heart disease. Am. J. Cardiol. 2009; 104 (12): 1755–62. DOI: 10.1016/j.amjcard.2009.07.060
- Wu V.C., Takeuchi M., Otani K., Haruki N., Yoshitani H., Tamura M. et al. Effect of through-plane and twisting motion on left ventricular strain calculation: direct comparison between two-dimensional and threedimensional speckle-tracking echocardiography. J. Am. Soc. Echocardiogr. 2013; 26 (11): 1274–81.e4. DOI: 10.1016/j.echo.2013.07.006. Epub 2013 Aug 14.
- Smith B.C., Dobson G., Dawson D., Charalampopoulos A., Grapsa J., Nihoyannopoulos P. Three-dimensional speckle tracking of the right ventricle: toward optimal quantification of right ventricular dysfunction in pulmonary hypertension. J. Am. Coll. Cardiol. 2014; 64: 41–51. DOI: 10.1016/j.jacc.2014.01.084
- Atsumi A., Seo Y., Ishizu T., Nakamura A., Enomoto Y., Harimura Y. et al. Ventricular deformation analyses using a three-dimensional speckle-tracking echocardiographic system specialized for the right ventricle. J. Am. Soc. Echocardiogr. 2016; 29 (5): 402–11.e2. DOI: 10.1016/j.echo.2015.12.014. Epub 2016 Feb 12.
- Zhou Q., Shen J., Liu Y., Luo R., Tan B., Li G. Assessment of left ventricular systolic function in patients with iron deficiency anemia by three-dimensional speckle-tracking echocardiography. Anatol. J. Cardiol. 2017; 18 (3): 194–9. DOI: 10.14744/AnatolJCardiol.2017.7694
- Kleijn S.A., Pandian N.G., Thomas J.D., Perez de Isla L., Kamp O., Zuber M. et al. Normal reference values of left ventricular strain using three-dimensional speckle tracking echocardiography: results from a multicentre study. Eur. Heart J. Cardiovasc. Imaging. 2015; 16 (4): 410–6. DOI: 10.1093/ehjci/jeu213. Epub 2014 Oct 26.
- Muraru D., Cucchini U., Mihˇailˇa S., Miglioranza M.H., Aruta P., Cavalli G. et al. Left ventricular myocardial strain by three-dimensional speckle-tracking echocardiography in healthy subjects: reference values and analysis of their physiologic and technical determinants. J. Am. Soc. Echocardiogr. 2014; 27 (8): 858–71.e1. DOI: 10.1016/j.echo.2014.05.010. Epub 2014 Jun 26.
- Ancona R., Comenale Pinto S., Caso P., D'Andrea A., Di Salvo G., Arenga F. et al. Left atrium by echocardiography in clinical practice: from conventional methods to new echocardiographic techniques. Sci. World J. 2014; 2014: 451042. DOI: 10.1155/2014/451042. Epub 2014 Jun 9.
- Donal E., Lip G.Y., Galderisi M., Goette A., Shah D., Marwan M. et al. EACVI/EHRA Expert Consensus Document on the role of multi-modality imaging for the evaluation of patients with atrial fibrillation. Eur. Heart J. Cardiovasc. Imaging. 2016; 17 (4): 355–83. DOI: 10.1093/ehjci/jev354. Epub 2016 Feb 9.
- Heo R., Hong G.R., Kim Y.J., Mancina J., Cho I.J., Shim C.Y. et al. Automated quantification of left atrial size using three-beat averaging real-time three-dimensional echocardiography in patients with atrial fibrillation. N. Cardiovasc. Ultrasound. 2015; 13: 38.
- Sugeng L., Mor-Avi V., Weinert L., Niel J., Ebner C., Steringer-Mascherbauer R. et al. Multimodality comparison of quantitative volumetric analysis of the right ventricle. JACC Cardiovasc. Imaging. 2010; 3 (1): 10–8. DOI: 10.1016/j.jcmg.2009.09.017
- Leibundgut G., Rohner A., Grize L., Bernheim A., Kessel-Schaefer A., Bremerich J. et al. Dynamic assessment of right ventricular volumes and function by realtime three-dimensional echocardiography: a comparison study with magnetic resonance imaging in 100 adult patients. J. Am. Soc. Echocardiogr. 2010; 23 (2): 116–26. DOI: 10.1016/j.echo.2009.11.016
- Grewal J., Majdalany D., Syed I., Pellikka P., Warnes C.A. Three-dimensional echocardiographic assessment of right ventricular volume and function in adult patients with congenital heart disease: comparison with magnetic resonance imaging. J. Am. Soc. Echocardiogr. 2010; 23: 127–33. DOI: 10.1016/j.echo.2009.11.002
- Tamborini G., Marsan N.A., Gripari P., Maffessanti F., Brusoni D., Muratori M. et al. Reference values for right ventricular volumes and ejection fraction with real-time three-dimensional echocardiography: evaluation in a large series of normal subjects. J. Am. Soc. Echocardiogr. 2010; 23 (2): 109–15. DOI: 10.1016/j.echo.2009.11.026
- Laser K.T., Horst J.P., Barth P., Kelter-Klöpping A., Haas N.A., Burchert W. et al. Knowledge-based reconstruction of right ventricular volumes using real-time three-dimensional echocardiographic as well as cardiac magnetic resonance images: comparison with a cardiac magnetic resonance standard. J. Am. Soc. Echocardiogr. 2014; 27 (10): 1087–97. DOI: 10.1016/j.echo.2014.05.008. Epub 2014 Jun 24.
- Maffessanti F., Muraru D., Esposito R., Gripari P., Ermacora D., Santoro C. et al. Age-, body size-, and sexspecific reference values for right ventricular volumes and ejection fraction by three-dimensional echocardiography: a multicenter echocardiographic study in 507 healthy volunteers. Circ. Cardiovasc. Imaging. 2013; 6 (5): 700–10. DOI: 10.1161/CIRCIMAGING.113.000706. Epub 2013 Jun 27.
- Moceri P., Duchateau N., Baudouy D., Schouver E.D., Leroy S., Squara F. et al. Three-dimensional right-ventricular regional deformation and survival in pulmonary hypertension. Eur. Heart J. Cardiovasc. Imaging. 2018; 19 (4): 450–8. DOI: 10.1093/ehjci/jex163
- Levine R.A., Handschumacher M.D., Sanfilippo A.J., Hagege A.A., Harrigan P. et al. Three-dimensional echocardiographic reconstruction of the mitral valve, with implications for the diagnosis of mitral valve prolapse. Circulation. 1989; 80: 589–98. DOI: 10.1161/01.cir.80.3.589
- Косарева Т.И., Макаренко В.Н., Мироненко В.А., Майтесян Ш.А., Слепцова А.М., Данилов Г.В. Трехмерная реконструкция митрального клапана в выборе тактики хирургической коррекции порока. Грудная и сердечно-сосудистая хирургия. 2018; 60 (4): 342–51. DOI: 10.24022/0236-2791-2018-60-4-342-351 [Kosareva T.I., Makarenko V.N., Mironenko V.A., Maytesyan Sh.A., Sleptsova A.M., Danilov G.V. Threedimensional reconstruction of the mitral valve in the choice of tactics for surgical correction of the defect. Russian Journal of Thoracic and Cardiovascular Surgery. 2018; 60 (4): 342–51 (in Russ.). DOI: 10.24022/0236-2791-2018-60-4-342-351
- Levack M.M., McCarthy F.H., Takebe M., Cheung A.T., Woo Y.J., Acker M.A. et al. Abstract 18555: Pre-operative three-dimensional echocardiography predicts repair failure in ischemic mitral regurgitation. Circulation. 2012; 126: A18555.
- Fidock B., Barker N., Balasubramanian N., Archer G., Fent G., Al-Mohammad A. et al. A systematic review of 4D-flow MRI derived mitral regurgitation quantification methods. Front. Cardiovasc. Med. 2019; 6: 103. DOI: 10.3389/fcvm.2019.00103
- Magne J., Pibarot P., Dagenais F., Hachicha Z., Dumesnil J.G., Sénéchal M. Preoperative posterior leaflet angle accurately predicts outcome after restrictive mitral valve annuloplasty for ischemic mitral regurgitation. Circulation. 2007; 115 (6): 782–91. DOI: 10.1161/CIRCULATIONAHA.106.649236
- Mansi T., Voigt I., Georgescu B., Zheng X., Mengue E.A., Hackl M. et al. An integrated framework for finite-element modeling of mitral valve biomechanics from medical images: application to MitralClip intervention planning. Med. Image Anal. 2012; 16 (7): 1330–46. DOI: 10.1016/j.media.2012.05.009. Epub 2012 Jun 13.
- Zhang D., McGarvey J.R., Lee M., Takebayashi S., Aoki C., Dillard C. et al. Mitral valve stenosis and left ventricular hemodynamic alterations after mitral valve repair. J. Cardiovasc. Magn. Reson. 2014; 16: O70. DOI: 10.1186/1532-429X-16-S1-O70
- Zhorzholiani Sh.T., Mironov A.A., Talygin E.A., Tsygankov Yu.M., Agafonov A.V., Kiknadze G.I. et al. Analysis of the dynamic geometric configuration of the aortic flow channel from the standpoint of tornado selforganization of blood flow. Bulletin of Experimental Byology and Medicine. 2017; 164 (10): 519–24 (in Russ.). DOI: 10.1007/s10517-018-4023-z
- Gripari P., Ewe S.H., Fusini L., Muratori M., Ng A.C., Cefalù C. et al. Intraoperative 2D and 3D transoesophageal echocardiographic predictors of aortic regurgitation after transcatheter aortic valve implantation. Heart. 2012; 98: 1229–36. DOI: 10.1136/heartjnl-2012- 301998
- Ge S., Warner J.G. Jr, Abraham T.P., Kon N.D., Brooker R.F., Nomeir A.M. et al. Three-dimensional surface area of the aortic valve orifice by three-dimensional echocardiography: clinical validation of a novel index for assessment of aortic stenosis. Am. Heart J. 1998; 136 (6): 1042–50. DOI: 10.1016/s0002-8703(98)70161-9
- Nii M., Roman K.S., Macgowan C.K., Smallhorn J.F. Insight into normal mitral and tricuspid annular dynamics in pediatrics: a real-time three-dimensional echocardiographic study. J. Am. Soc. Echocardiogr. 2005; 18: 805–14.
- Henein M.Y., O'Sullivan C.A., Li W., Sheppard M., Ho Y., Pepper J. et al. Evidence for rheumatic valve disease in patients with severe tricuspid regurgitation long after mitral valve surgery: the role of 3D echo reconstruction. J. Heart Valve Dis. 2003; 12 (5): 566–72.
- Bockeria L.A., Kosareva T.I., Makarenko V.N., Mironenko V.A., Maytesyan Sh.A., Danilov G.V. Threedimensional echocardiography in the diagnosis of complications associated with mechanical valve prostheses. The Bulletin of Bakoulev Center. Cardiovascular Diseases. 2016; 17 (4): 15–9 (in Russ.).
- Rusk R.A., Li X.N., Mori Y., Irvine T., Jones M., Zetts A.D. et al. Direct quantification of transmitral flow volume with dynamic 3-dimensional digital color Doppler: a validation study in an animal model. J. Am. Soc. Echocardiogr. 2002; 15 (1): 55–62. DOI: 10.1067/mje.2002.116716
- Deng J., Yates R., Sullivan I.D., McDonald D., Linney A.D., Lees W.R. et al. Dynamic three-dimensional color Doppler ultrasound of human fetal intracardiac flow. Ultrasound Obstet. Gynecol. 2002; 20 (2): 131–6. DOI: 10.1046/j.1469-0705.2002.00752.x
- Simpson J.M. Real-time three-dimensional echocardiography of congenital heart disease using a high frequency paediatric matrix transducer. Eur. J. Echocardiogr. 2008; 9: 222–4. DOI: 10.1016/j.euje.2007.06.012
- Acar P., Abdel-Massih T., Douste-Blazy M.Y., Dulac Y., Bonhoeffer P., Sidi D. Assessment of muscular ventricular septal defect closure by transcatheter or surgical approach: a three-dimensional echocardiographic study. Eur. J. Echocardiogr. 2002; 3 (3): 185–91. DOI: 10.1053/euje.2002.0143
- Okada K., Kaga S., Tsujita K., Sakamoto Y., Masauzi N., Mikami T. Right ventricular basal inflow and outflow tract diameters overestimate right ventricular size in subjects with sigmoid-shaped interventricular septum: a study using three-dimensional echocardiography. Int. J. Cardiovasc. Imaging. 2019; 35 (7): 1211–9. DOI: 10.1007/s10554-019-01536-6. Epub 2019 Jan 25.
- Watanabe N. Guiding the percutaneous mitral valve repair by real-time three-dimensional transesophageal echocardiography: Beyond procedural navigation. J. Cardiol. 2018; 71 (4): 327–8. DOI: 10.1016/j.jjcc. 2017.12.002. Epub 2017 Dec 27.
- Braun D., Orban M., Michalk F., Barthel P., Hoppe K., Sonne C. et al. Three-dimensional transoesophageal echocardiography for the assessment of clip attachment to the leaflets in percutaneous edge-to-edge repair of the mitral valve. EuroIntervention. 2013; 8 (12): 1379–87. DOI: 10.4244/EIJV8I12A211
- Tamborini G., Fusini L., Muratori M., Cefalù C., Gripari P., Ali S.G. et al. Feasibility and accuracy of three-dimensional transthoracic echocardiography vs. multidetector computed tomography in the evaluation of aortic valve annulus in patient candidates to transcatheter aortic valve implantation. Eur. Heart J. Cardiovasc. Imaging. 2014; 15 (12): 1316–23. DOI: 10.1093/ehjci/jeu157. Epub 2014 Sep 3.
- Yildiz M., Toprak C. Three-dimensional transoesophageal echocardiography in electrophysiology laboratory. J. Atr. Fibrillation. 2013; 5 (6): 841. DOI: 10.4022/jafib.841
- Cai Q., Ahmad M. Left ventricular dyssynchrony by three-dimensional echocardiography: Current understanding and potential future clinical applications. Echocardiography. 2015; 32 (8): 1299–306. DOI: 10.1111/echo.12965. Epub 2015 Apr 28.
- Bockeria L.A., Bockeria O.L., Klimchuk I.Ya., Sanakoev M.K. Surgical correction of obstructive hypertrophic cardiomyopathy with SAM-syndrome and atrial fibrillation. Annals of Arrithmology. 2016; 13 (4): 216–21 (in Russ.). DOI: 10.15275/annaritmol.2016.4.4
- Khitrova M.E., Bockeria L.A., Berseneva M.I., Malenkov D.A. Clinical cases of successful surgical treatment of hypertrophic obstructive cardiomyopathy with mitral insufficiency and SAM-syndrome, performed by the method of myectomy of the interventricular septum from the right ventricle. The Bulletin of Bakoulev Center. Cardiovascular Diseases. 2017; 18 (6): 609–17 (in Russ.). DOI: 10.24022/1810-0694-2017-18-6-609-617
- Bockeria L.A., Bockeria O.L., Fatulaev Z.F., Klimchuk I.Ya., Mironenko M.Yu., Diasamidze K.E. et al. Maze IIIB method in surgery for atrial fibrillation complicated by arrhytmogenic mitral regurgitation. Annals of Arrithmology. 2020; 17 (2): 68–83 (in Russ.). DOI: 10.15275/annaritmol.2020.2.1
- Bockeria L.A., Bockeria O.L., Fatulaev Z.F., Mironenko M.Yu., Shvarts V.A., Klimchuk I.Ya., et al. Long-term results of surgical treatment of arrythmogenic valvular regurgitation using Maze IIIB procedure. Annals of Arrithmology. 2018; 15 (2): 84–91 (in Russ.). DOI: 10.15275/annaritmol.2018.2.2]
About the authors
- Marina Yu. Mironenko, Cand. Med. Sc., Head of Department, Ultrasound Diagnostician, ORCID
- Leo A. Bockeria, Academician of the Russian Academy of Sciences and Russian Academy of Medical Sciences, President, ORCID