Аннотация
В настоящее время эхокардиография является основным диагностическим инструментом в арсенале кардиолога и кардиохирурга для визуализации сердца и оценки динамики его состояния на всех этапах наблюдения пациента. Решения кардиолога в большой степени основываются на изображениях, полученных в результате ультразвукового исследования. Со времени, когда технология ультразвуковой визуализации дала первое представление о сердце человека, диагностические возможности расширялись за счет совершенствования методики получения и обработки первичной информации. Одним из наиболее значительных достижений стало внедрение трехмерного изображения и его развитие от трудоемкой автономной, во многом ручной и операторзависимой, реконструкции к объемной визуализации в реальном времени. Технологические усовершенствования и увеличение вычислительной мощности ультразвуковых аппаратов предполагают интеграцию в рутинную клиническую практику. Главным преимуществом трехмерной визуализации является реалистичный и уникальный всесторонний обзор клапанов, камер сердца и потоков в них. Повышение точности эхокардиографической оценки достигается за счет исключения необходимости геометрического моделирования и ошибок, свойственных двухмерной визуализации. Кроме того, трехмерная визуализация весьма действенна в интраоперационных и послеоперационных условиях, поскольку позволяет мгновенно оценить эффективность хирургических вмешательств. В этой статье рассматривается мировая литература, в которой представлена научная основа для клинического использования трехмерной ультразвуковой визуализации сердца и обсуждается ее применение в количественной и качественной оценке камер и клапанов сердца.
Литература
- Jiang L., Morrissey R., Handschumacher M.D., Vazquez de Prada J.A., He J., Picard M.H. et al. Quantitative three-dimensional reconstruction of left ventricular volume with complete borders detected by acoustic quantification underestimates volume. Am. Heart J. 1996; 131: 553–9. DOI: 10.1016/s0002-8703(96)90536-0
- Рыбакова М.К., Митьков В.В. Трехмерная и четырехмерная эхокардиография. Клинические возможности метода. Consilium Medicum. 2015; 17 (5): 80–4.
- Lang R.M., Addetia K., Narang A. 3Dimensional echocardiography: latest developments and future directions. JACC: Cardiovasc. Imaging. 2018; 11 (12): 201. DOI: 10.1016/j.jcmg.2018.06.024
- Sköldborg V., Madsen P.L., Dalsgaard M., Abdulla J. Quantification of mitral valve regurgitation by 2D and 3D echocardiography compared with cardiac magnetic resonance a systematic review and meta-analysis. Int. J. Cardiovasc. Imaging. 2020; 36 (2): 279–89. DOI: 10.1007/s10554-019-01713-7. Epub 2019 Oct 29
- Голухова Е.З., Машина Т.В., Джанкетова В.С., Мрикаев Д.В. Трехмерная чреспищеводная эхокардиография в диагностике заболеваний митрального клапана. Российский электронный журнал лучевой36The Bulletin of Bakoulev Center. Cardiovascular Diseases. 2021; 22 (1) DOI: 10.24022/1810-0694-2021-22-1-21-39
- Толстихина А.А., Машина Т.В., Мрикаев Д.В., Джанкетова В.С., Громова О.И., Голухова Е.З. Возможности методики Mitral Valve Quantification в кардиохирургии. Альманах клинической медицины. 2017; 45 (8): 635–43. DOI: 10.18786/2072-0505-2017-45-8- 635-643
- Chandra S., Salgo I.S., Sugeng L., Weinert L., Tsang W., Takeuchi M. et al. Characterization of degenerative mitral valve disease using morphologic analysis of realtime three-dimensional echocardiographic images: objective insight into complexity and planning of mitral valve repair. Circ. Cardiovasc. Imaging. 2011; 4 (1): 24–32. DOI: 10.1161/CIRCIMAGING.109.924332. Epub 2010 Sep 30.
- Ludomirsky A., Vermilion R., Nesser J., Marx G., Vogel V., Derman R. et al. Transthoracic real-time threedimensional echocardiography using the rotational scanning approach for data acquisition. Echocardiography. 1994; 11: 599–606. DOI: 10.1111/j.1540-8175.1994. tb01104.x
- Roelandt J., Salustri A., Mumm B., Vletter W. Precordial threedimensional echocardiography with a rotational imaging probe: methods and initial clinical experience. Echocardiography. 1995; 12: 243–52.
- Pushparajah K., Barlow A., Tran V.-H., Miller O.I., Zidere V., Vaidyanathan B. et al. A systematic threedimensional echocardiographic approach to assist surgical planning in double outlet right ventricle. Echocardiography. 2013; 30: 234–8.
- German C., Nanda N.C. Three-dimensional echocardiographic assessment of atrial septal defects. Ann. Card. Anaesth. 2015; 18 (1): 69–73. DOI: 10.4103/0971-9784.148324
- Bechis M.Z., Rubenson D.S., Price M.J. Imaging assessment of the interatrial septum for transcatheter atrial septal defect and patent foramen ovale closure. Interv. Cardiol. Clin. 2017; 6 (4): 505–24. DOI: 10.1016/j.iccl. 2017.05.004
- Feng R., Saraf R., Shapeton A., Matyal R., Laham R., Mahmood F. A complex atrial septal defect and threedimensional echocardiography: A question and an answer. J. Cardiothorac. Vasc. Anesth. 2016; 30 (4): 1050–2. DOI: 10.1053/j.jvca.2015.09.027. Epub 2015 Oct 1.
- Cheng T.O., Xie M.X., Wang X.F., Wang Y., Lu Q. Realtime 3-dimensional echocardiography in assessing atrial and ventricular septal defects: an echocardiographic-surgical correlative study. Am. Heart J. 2004; 148: 1091–5.
- Barrea C., Levasseur S., Roman K., Nii M., Coles J.G., Williams W.G., Smallhorn J.F. Three-dimensional echocardiography improves the understanding of left atrioventricular valve morphology and function in atrioventricular septal defects undergoing patch augmentation. J. Thorac. Cardiovasc. Surg. 2005; 129 (4): 746–53. DOI: 10.1016/j.jtcvs.2004.07.023
- Toh N., Kanzaki H., Nakatani S., Kohyama K., Ohara T., Kim J. et al. Partial atrioventricular septal defect assessed by real-time three-dimensional echocardiography: a case report. J. Cardiol. 2007; 50 (6): 379–82.
- Cheng H.L., Huang C.H., Tsai H.E., Chen M.Y., Fan S.Z., Hsiao P.N. Intraoperative assessment of partial atrioventricular septal defect with a cleft mitral valve by real-time three-dimensional transesophageal echocardiography. Anesth. Analg. 2012; 114 (4): 731–4. DOI: 10.1213/ANE.0b013e3182468db3. Epub 2012 Feb 17.
- Cognet T., Séguéla P.E., Thomson E., Bouisset F., Lairez O., Hascoёt S. et al. Assessment of valvular surfaces in children with a congenital bicuspid aortic valve: preliminary three-dimensional echocardiographic study. Arch. Cardiovasc. Dis. 2013; 106 (5): 295–302. DOI: 10.1016/j.acvd.2012.11.005. Epub 2013 Mar 11.
- Ahmed M.I., Escañ uela M.G., Crosland W.A., McMahon W.S., Alli O.O., Nanda N.C. Utility of live/real time three-dimensional transesophageal echocardiography in the assessment and percutaneous intervention of bioprosthetic pulmonary valve stenosis. Echocardiography. 2014; 31 (4): 531–3. DOI: 10.1111/echo.12551. Epub 2014 Mar 20.
- Taha F., Elshedoudy S. Role of 3D transesophageal echocardiography in transcatheter closure of atrial septal aneurysms. Echocardiography. 2019; 36 (10): 1884–94. DOI: 10.1111/echo.14482. Epub 2019 Sep 21.
- Li X., Shiota T., Delabays A., Teien D., Zhou X., Sinclair B. et al. Flow convergence flow rates from 3-dimensional reconstruction of color Doppler flow maps for computing transvalvular regurgitant flows without geometric assumptions: An in vitro quantitative flow study. J. Am. Soc. Echocardiogr. 1999; 12 (12): 1035–44. DOI: 10.1016/s0894-7317(99)70099-4
- Sugeng L., Spencer K.T., Mor-Avi V., DeCara J.M., Bednarz J.E., Weinert L. et al. Dynamic three-dimensional color flow Doppler: an improved technique for the assessment of mitral regurgitation. Echocardiography. 2003; 20 (3): 265–73. DOI: 10.1046/j.1540-8175.2003. 03024.x
- Бокерия Л.А., Бокерия О.Л., Климчук И.Я., Мироненко М.Ю., Шварц В.А. Оценка морфометрических параметров митрального клапана при хирургическом лечении фибрилляции предсердий. Анналы аритмологии. 2016; 13 (4): 192–203. DOI: 10.15275/annaritmol.2016.4.1 [Bockeria L.A., Bockeria O.L., Klimchuk I.Ya., Mironenko M.Yu., Shvarts V.A. Assessment of the morphometric parameters of the mitral valve in the surgical treatment of atrial fibrillation. Annals of Arrithmology. 2016; 13 (4): 192–203 (in Russ.). DOI: 10.15275/annaritmol. 2016.4.1
- Shiota T., McCarthy P.M., White R.D., Qin J.X., Greenberg N.L., Flamm S.D. et al. Initial clinical experience of real-time three-dimensional echocardiography in patients with ischemic and idiopathic dilated cardiomyopathy. Am. J. Cardiol. 1999; 84 (9): 1068–73. DOI: 10.1016/s0002-9149(99)00500-7
- Mondelli J.A., Di Luzio S., Nagaraj A., Kane B.J., Smulevitz B., Nagaraj A.V. et al. The validation of volumetric real-time 3-dimensional echocardiography for the determination of left ventricular function. J. Am. Soc. Echocardiogr. 2001; 14 (10): 994–1000. DOI: 10.1067/mje.2001.115770
- Otani K., Nakazono A., Salgo I.S., Lang R.M., Takeuchi M. Three-dimensional echocardiographic assessment of left heart chamber size and function with fully automated quantification software in patients with atrial fibrillation. J. Am. Soc. Echocardiogr. 2016; 29: 955–65.
- Bernard A., Addetia K., Dulgheru R., Caballero L., Sugimoto T., Akhaladze N. et al. 3D echocardiographic reference ranges for normal left ventricular volumes and strain: results from the EACVI NORRE study. Eur. Heart J. Cardiovasc. Imaging. 2017; 18 (4): 475–83. DOI: 10.1093/ehjci/jew28437
- Bleakley C., Monaghan M. 3D transesophageal echocardiography in TAVR. Echocardiography. 2020; 37 (10): 1654–64. DOI: 10.1111/echo.1477
- Jacobs L.D., Salgo I.S., Goonewardena S., Weinert L., Coon P., Bardo D. et al. Rapid online quantification of left ventricular volume from real-time three-dimensional echocardiographic data. Eur. Heart J. 2006; 27 (4): 460–8. DOI: 10.1093/eurheartj/ehi666. Epub 2005 Nov 30.
- Thavendiranathan P., Grant A.D., Negishi T., Plana J.C., Popovic Z.B., Marwick T.H. Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes: application to patients undergoing cancer chemotherapy. J. Am. Coll. Cardiol. 2013; 61: 77–84.
- Lang R.M., Badano L.P., Mor-Avi V., Afilalo J., Armstrong A., Ernande L. et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015; 28 (1): 1–39.e14. DOI: 10.1016/j.echo.2014.10.003
- Muraru D., Hahn R.T., Soliman O.I., Faletra F.F., Basso C., Badano L.P. 3-Dimensional echocardiography in imaging the tricuspid valve. JACC Cardiovasc. Imaging. 2019; 12 (3): 500–15. DOI: 10.1016/j.jcmg.2018.10.035
- Fang L., Hsiung M.C., Miller A.P., Nanda N.C., Yin W.H., Young M.S. et al. Assessment of aortic regurgitation by live three-dimensional transthoracic echocardiographic measurements of vena contracta area: usefulness and validation. Echocardiography. 2005; 22 (9): 775–81. DOI: 10.1111/j.1540-8175.2005.00171.x
- Berdejo J., Shiota M., Mihara H., Itabashi Y., Utsunomiya H., Shiota T. Vena contracta analysis by color Doppler three-dimensional transesophageal echocardiography shows geometrical differences between prolapse and pseudoprolapse in eccentric mitral regurgitation. Echocardiography. 2017; 34 (5): 683–9. DOI: 10.1111/echo.13508. Epub 2017 Mar 19.
- Pickett C.A., Cheezum M.K., Kassop D., Villines T.C., Hulten E.A. Accuracy of cardiac CT, radionucleotide and invasive ventriculography, two- and three- dimensional echocardiography, and SPECT for left and right ventricular ejection fraction compared with cardiac MRI: a meta-analysis. Eur. Heart J. Cardiovasc. Imaging. 2015; 16: 848–52.
- Tsang W., Salgo I.S., Medvedofsky D., Takeuchi M., Prater D., Weinert L. et al. Transthoracic 3D echocardiographic left heart chamber quantification using an automated adaptive analytics algorithm. JACC Cardiovasc. Imaging. 2016; 9 (7): 769–82. DOI: 10.1016/j.jcmg.2015.12.020. Epub 2016 Jun 15.
- Medvedofsky D., Mor-Avi V., Amzulescu M., Fernández-Golfín C., Hinojar R., Monaghan M.J. et al. Threedimensional echocardiographic quantification of the leftheart chambers using an automated adaptive analytics algorithm: multicentre validation study. Eur. Heart J. Cardiovasc. Imaging. 2018; 19 (1): 47–58. DOI: 10.1093/ehjci/jew328
- Mor-Avi V., Lang R.M., Badano L.P., Belohlavek M., Cardim N.M., Derumeaux G. et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. J. Am. Soc. Echocardiogr. 2011; 24 (3): 277–313. DOI: 10.1016/j.echo.2011.01.015
- Maffessanti F., Nesser H.J., Weinert L., SteringerMascherbauer R., Niel J., Gorissen W. et al. Quantitative evaluation of regional left ventricular function using three-dimensional speckle tracking echocardiography in patients with and without heart disease. Am. J. Cardiol. 2009; 104 (12): 1755–62. DOI: 10.1016/j.amjcard.2009.07.060
- Wu V.C., Takeuchi M., Otani K., Haruki N., Yoshitani H., Tamura M. et al. Effect of through-plane and twisting motion on left ventricular strain calculation: direct comparison between two-dimensional and threedimensional speckle-tracking echocardiography. J. Am. Soc. Echocardiogr. 2013; 26 (11): 1274–81.e4. DOI: 10.1016/j.echo.2013.07.006. Epub 2013 Aug 14.
- Smith B.C., Dobson G., Dawson D., Charalampopoulos A., Grapsa J., Nihoyannopoulos P. Three-dimensional speckle tracking of the right ventricle: toward optimal quantification of right ventricular dysfunction in pulmonary hypertension. J. Am. Coll. Cardiol. 2014; 64: 41–51. DOI: 10.1016/j.jacc.2014.01.084
- Atsumi A., Seo Y., Ishizu T., Nakamura A., Enomoto Y., Harimura Y. et al. Ventricular deformation analyses using a three-dimensional speckle-tracking echocardiographic system specialized for the right ventricle. J. Am. Soc. Echocardiogr. 2016; 29 (5): 402–11.e2. DOI: 10.1016/j.echo.2015.12.014. Epub 2016 Feb 12.
- Zhou Q., Shen J., Liu Y., Luo R., Tan B., Li G. Assessment of left ventricular systolic function in patients with iron deficiency anemia by three-dimensional speckle-tracking echocardiography. Anatol. J. Cardiol. 2017; 18 (3): 194–9. DOI: 10.14744/AnatolJCardiol.2017.7694
- Kleijn S.A., Pandian N.G., Thomas J.D., Perez de Isla L., Kamp O., Zuber M. et al. Normal reference values of left ventricular strain using three-dimensional speckle tracking echocardiography: results from a multicentre study. Eur. Heart J. Cardiovasc. Imaging. 2015; 16 (4): 410–6. DOI: 10.1093/ehjci/jeu213. Epub 2014 Oct 26.
- Muraru D., Cucchini U., Mihˇailˇa S., Miglioranza M.H., Aruta P., Cavalli G. et al. Left ventricular myocardial strain by three-dimensional speckle-tracking echocardiography in healthy subjects: reference values and analysis of their physiologic and technical determinants. J. Am. Soc. Echocardiogr. 2014; 27 (8): 858–71.e1. DOI: 10.1016/j.echo.2014.05.010. Epub 2014 Jun 26.
- Ancona R., Comenale Pinto S., Caso P., D'Andrea A., Di Salvo G., Arenga F. et al. Left atrium by echocardiography in clinical practice: from conventional methods to new echocardiographic techniques. Sci. World J. 2014; 2014: 451042. DOI: 10.1155/2014/451042. Epub 2014 Jun 9.
- Donal E., Lip G.Y., Galderisi M., Goette A., Shah D., Marwan M. et al. EACVI/EHRA Expert Consensus Document on the role of multi-modality imaging for the evaluation of patients with atrial fibrillation. Eur. Heart J. Cardiovasc. Imaging. 2016; 17 (4): 355–83. DOI: 10.1093/ehjci/jev354. Epub 2016 Feb 9.
- Heo R., Hong G.R., Kim Y.J., Mancina J., Cho I.J., Shim C.Y. et al. Automated quantification of left atrial size using three-beat averaging real-time three-dimensional echocardiography in patients with atrial fibrillation. N. Cardiovasc. Ultrasound. 2015; 13: 38.
- Sugeng L., Mor-Avi V., Weinert L., Niel J., Ebner C., Steringer-Mascherbauer R. et al. Multimodality comparison of quantitative volumetric analysis of the right ventricle. JACC Cardiovasc. Imaging. 2010; 3 (1): 10–8. DOI: 10.1016/j.jcmg.2009.09.017
- Leibundgut G., Rohner A., Grize L., Bernheim A., Kessel-Schaefer A., Bremerich J. et al. Dynamic assessment of right ventricular volumes and function by realtime three-dimensional echocardiography: a comparison study with magnetic resonance imaging in 100 adult patients. J. Am. Soc. Echocardiogr. 2010; 23 (2): 116–26. DOI: 10.1016/j.echo.2009.11.016
- Grewal J., Majdalany D., Syed I., Pellikka P., Warnes C.A. Three-dimensional echocardiographic assessment of right ventricular volume and function in adult patients with congenital heart disease: comparison with magnetic resonance imaging. J. Am. Soc. Echocardiogr. 2010; 23: 127–33. DOI: 10.1016/j.echo.2009.11.002
- Tamborini G., Marsan N.A., Gripari P., Maffessanti F., Brusoni D., Muratori M. et al. Reference values for right ventricular volumes and ejection fraction with real-time three-dimensional echocardiography: evaluation in a large series of normal subjects. J. Am. Soc. Echocardiogr. 2010; 23 (2): 109–15. DOI: 10.1016/j.echo.2009.11.026
- Laser K.T., Horst J.P., Barth P., Kelter-Klöpping A., Haas N.A., Burchert W. et al. Knowledge-based reconstruction of right ventricular volumes using real-time three-dimensional echocardiographic as well as cardiac magnetic resonance images: comparison with a cardiac magnetic resonance standard. J. Am. Soc. Echocardiogr. 2014; 27 (10): 1087–97. DOI: 10.1016/j.echo.2014.05.008. Epub 2014 Jun 24.
- Maffessanti F., Muraru D., Esposito R., Gripari P., Ermacora D., Santoro C. et al. Age-, body size-, and sexspecific reference values for right ventricular volumes and ejection fraction by three-dimensional echocardiography: a multicenter echocardiographic study in 507 healthy volunteers. Circ. Cardiovasc. Imaging. 2013; 6 (5): 700–10. DOI: 10.1161/CIRCIMAGING.113.000706. Epub 2013 Jun 27.
- Moceri P., Duchateau N., Baudouy D., Schouver E.D., Leroy S., Squara F. et al. Three-dimensional right-ventricular regional deformation and survival in pulmonary hypertension. Eur. Heart J. Cardiovasc. Imaging. 2018; 19 (4): 450–8. DOI: 10.1093/ehjci/jex163
- Levine R.A., Handschumacher M.D., Sanfilippo A.J., Hagege A.A., Harrigan P. et al. Three-dimensional echocardiographic reconstruction of the mitral valve, with implications for the diagnosis of mitral valve prolapse. Circulation. 1989; 80: 589–98. DOI: 10.1161/01.cir.80.3.589
- Косарева Т.И., Макаренко В.Н., Мироненко В.А., Майтесян Ш.А., Слепцова А.М., Данилов Г.В. Трехмерная реконструкция митрального клапана в выборе тактики хирургической коррекции порока. Грудная и сердечно-сосудистая хирургия. 2018; 60 (4): 342–51. DOI: 10.24022/0236-2791-2018-60-4-342-351
- Levack M.M., McCarthy F.H., Takebe M., Cheung A.T., Woo Y.J., Acker M.A. et al. Abstract 18555: Pre-operative three-dimensional echocardiography predicts repair failure in ischemic mitral regurgitation. Circulation. 2012; 126: A18555.
- Fidock B., Barker N., Balasubramanian N., Archer G., Fent G., Al-Mohammad A. et al. A systematic review of 4D-flow MRI derived mitral regurgitation quantification methods. Front. Cardiovasc. Med. 2019; 6: 103. DOI: 10.3389/fcvm.2019.00103
- Magne J., Pibarot P., Dagenais F., Hachicha Z., Dumesnil J.G., Sénéchal M. Preoperative posterior leaflet angle accurately predicts outcome after restrictive mitral valve annuloplasty for ischemic mitral regurgitation. Circulation. 2007; 115 (6): 782–91. DOI: 10.1161/CIRCULATIONAHA.106.649236
- Mansi T., Voigt I., Georgescu B., Zheng X., Mengue E.A., Hackl M. et al. An integrated framework for finite-element modeling of mitral valve biomechanics from medical images: application to MitralClip intervention planning. Med. Image Anal. 2012; 16 (7): 1330–46. DOI: 10.1016/j.media.2012.05.009. Epub 2012 Jun 13.
- Zhang D., McGarvey J.R., Lee M., Takebayashi S., Aoki C., Dillard C. et al. Mitral valve stenosis and left ventricular hemodynamic alterations after mitral valve repair. J. Cardiovasc. Magn. Reson. 2014; 16: O70. DOI: 10.1186/1532-429X-16-S1-O70
- Жоржолиани Ш.Т., Миронов А.А., Талыгин Е.А., Цыганков Ю.М., Агафонов А.В., Кикнадзе Г.И. и др. Анализ динамической геометрической конфигурации проточного канала аорты с позиций смерчевой самоорганизации потока крови. Бюллетень экспериментальной биологии и медицины. 2017; 164 (10): 519–24. DOI: 10.1007/s10517-018-4023-z
- Gripari P., Ewe S.H., Fusini L., Muratori M., Ng A.C., Cefalù C. et al. Intraoperative 2D and 3D transoesophageal echocardiographic predictors of aortic regurgitation after transcatheter aortic valve implantation. Heart. 2012; 98: 1229–36. DOI: 10.1136/heartjnl-2012- 301998
- Ge S., Warner J.G. Jr, Abraham T.P., Kon N.D., Brooker R.F., Nomeir A.M. et al. Three-dimensional surface area of the aortic valve orifice by three-dimensional echocardiography: clinical validation of a novel index for assessment of aortic stenosis. Am. Heart J. 1998; 136 (6): 1042–50. DOI: 10.1016/s0002-8703(98)70161-9
- Nii M., Roman K.S., Macgowan C.K., Smallhorn J.F. Insight into normal mitral and tricuspid annular dynamics in pediatrics: a real-time three-dimensional echocardiographic study. J. Am. Soc. Echocardiogr. 2005; 18: 805–14.
- Henein M.Y., O'Sullivan C.A., Li W., Sheppard M., Ho Y., Pepper J. et al. Evidence for rheumatic valve disease in patients with severe tricuspid regurgitation long after mitral valve surgery: the role of 3D echo reconstruction. J. Heart Valve Dis. 2003; 12 (5): 566–72.
- Бокерия Л.А., Косарева Т.И., Макаренко В.Н., Мироненко В.А., Майтесян Ш.А., Данилов Г.В. Трехмерная эхокардиография в диагностике осложнений, ассоциированных с механическими протезами клапанами сердца. Сердечно-сосудистые заболевания. Бюллетень НЦССХ им. А.Н. Бакулева РАМН. 2016; 17 (4): 15–9.
- Rusk R.A., Li X.N., Mori Y., Irvine T., Jones M., Zetts A.D. et al. Direct quantification of transmitral flow volume with dynamic 3-dimensional digital color Doppler: a validation study in an animal model. J. Am. Soc. Echocardiogr. 2002; 15 (1): 55–62. DOI: 10.1067/mje.2002.116716
- Deng J., Yates R., Sullivan I.D., McDonald D., Linney A.D., Lees W.R. et al. Dynamic three-dimensional color Doppler ultrasound of human fetal intracardiac flow. Ultrasound Obstet. Gynecol. 2002; 20 (2): 131–6. DOI: 10.1046/j.1469-0705.2002.00752.x
- Simpson J.M. Real-time three-dimensional echocardiography of congenital heart disease using a high frequency paediatric matrix transducer. Eur. J. Echocardiogr. 2008; 9: 222–4. DOI: 10.1016/j.euje.2007.06.012
- Acar P., Abdel-Massih T., Douste-Blazy M.Y., Dulac Y., Bonhoeffer P., Sidi D. Assessment of muscular ventricular septal defect closure by transcatheter or surgical approach: a three-dimensional echocardiographic study. Eur. J. Echocardiogr. 2002; 3 (3): 185–91. DOI: 10.1053/euje.2002.0143
- Okada K., Kaga S., Tsujita K., Sakamoto Y., Masauzi N., Mikami T. Right ventricular basal inflow and outflow tract diameters overestimate right ventricular size in subjects with sigmoid-shaped interventricular septum: a study using three-dimensional echocardiography. Int. J. Cardiovasc. Imaging. 2019; 35 (7): 1211–9. DOI: 10.1007/s10554-019-01536-6. Epub 2019 Jan 25.
- Watanabe N. Guiding the percutaneous mitral valve repair by real-time three-dimensional transesophageal echocardiography: Beyond procedural navigation. J. Cardiol. 2018; 71 (4): 327–8. DOI: 10.1016/j.jjcc. 2017.12.002. Epub 2017 Dec 27.
- Braun D., Orban M., Michalk F., Barthel P., Hoppe K., Sonne C. et al. Three-dimensional transoesophageal echocardiography for the assessment of clip attachment to the leaflets in percutaneous edge-to-edge repair of the mitral valve. EuroIntervention. 2013; 8 (12): 1379–87. DOI: 10.4244/EIJV8I12A211
- Tamborini G., Fusini L., Muratori M., Cefalù C., Gripari P., Ali S.G. et al. Feasibility and accuracy of three-dimensional transthoracic echocardiography vs. multidetector computed tomography in the evaluation of aortic valve annulus in patient candidates to transcatheter aortic valve implantation. Eur. Heart J. Cardiovasc. Imaging. 2014; 15 (12): 1316–23. DOI: 10.1093/ehjci/jeu157. Epub 2014 Sep 3.
- Yildiz M., Toprak C. Three-dimensional transoesophageal echocardiography in electrophysiology laboratory. J. Atr. Fibrillation. 2013; 5 (6): 841. DOI: 10.4022/jafib.841
- Cai Q., Ahmad M. Left ventricular dyssynchrony by three-dimensional echocardiography: Current understanding and potential future clinical applications. Echocardiography. 2015; 32 (8): 1299–306. DOI: 10.1111/echo.12965. Epub 2015 Apr 28.
- Бокерия Л.А., Бокерия О.Л., Климчук И.Я., Санакоев М.К. Хирургическая коррекция обструктивной гипертрофической кардиомиопатии с SAM-синдромом и фибрилляцией предсердий. Анналы аритмологии. 2016; 13 (4): 216–21. DOI: 10.15275/annaritmol.2016.4.4
- Хитрова М.Э., Бокерия Л.А., Берсенева М.И., Маленков Д.А. Клинические случаи успешного хирургического лечения гипертрофической обструктивной кардиомиопатии с митральной недостаточностью и SAM-синдромом, выполненного методом миэктомии межжелудочковой перегородки из правого желудочка. Сердечно-сосудистые заболевания. Бюллетень НЦССХ им. А.Н. Бакулева РАМН. 2017; 18 (6): 609–17. DOI: 10.24022/1810-0694-2017-18-6- 609-617
- Бокерия Л.А., Бокерия О.Л., Фатулаев З.Ф., Климчук И.Я., Мироненко М.Ю., Диасамидзе К.Э. и др. Методика операции «Лабиринт IIIБ» в хирургии фибрилляции предсердий, осложненной аритмогенной митральной недостаточностью. Анналы аритмологии. 2020; 17 (2): 68–83. DOI: 10.15275/annaritmol. 2020.2.1
- Бокерия Л.А., Бокерия О.Л., Фатулаев З.Ф., Мироненко М.Ю., Шварц В.А., Климчук И.Я. и др. Отдаленные результаты хирургической коррекции аритмогенной клапанной недостаточности при операции «Лабиринт IIIБ». Анналы аритмологии. 2018; 15 (2): 84–91. DOI: 10.15275/annaritmol.2018.2.2
Об авторах
- Мироненко Марина Юрьевна, канд. мед. наук, заведующая отделением ультразвуковой
диагностики, врач ультразвуковой диагностики, ORCID
- Бокерия Лео Антонович, академик РАН и РАМН, президент, ORCID