Abstract
Surgical tactics and methods for treatment of aneurysms and aortic dissection have not, yet been fully developed and the mortality rate remains high. One of the key point’s оf management for aneurysm and aortic dissection is the restoration of adequate hemodynamics in the aorta throughout. However, there is still no comprehensive concept of blood flow in the aorta that can be, used as a “golden” standard. Based on the literature data, including the SCOPUS and NCBI databases, modern views on aortal hemodynamics are, summarized. It is, noted that the approach from the point of view of tornado self-organization of blood flow allows solving the contradictions that arise when using other theories. An attempt to link the geometry of the aorta with the hemodynamics of the flow inside it is promising. In this case, it is necessary to take into account pathological changes in the aortic wall during aneurysm and dissection.
References
- Sampson U.K.A., Norman P.E., Fowkes F.G.R., Aboyans V., Song Y., Harrell Jr. F.E. et al. Global and Regional Burden of Aortic Dissection and Aneurysms: Mortality Trends in 21 World Regions, 1990 to 2010. Global Heart. 2014; 9 (1): 171–80. DOI: 10.1016/j.gheart.2013.12.010
- Hiratzka L.F., Bakris G.L., Beckman J.A., Bersin R.M., Carr V.F., Casey D.E. Jr. et al. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM Guidelines for the diagnosis and management of patients with thoracic aortic disease: executive summary. J. Am. Coll. Cardiol. 2010; 55 (14): 1509–44. DOI: 10.1016/j.jacc.2010.02.010
- Konstantinov B.A. Physiological and clinical foundations of surgical cardiology. Leningrad; 1981 (in Russ.).
- Ether C.R., Simmons C.A. Introductory biomechanics – From Cell to Organisms. In: Cambridge Texts in Biomedical Engineering. Cambridge; 2007. DOI: 10.1017/CBO9780511809217
- Torrent-Guasp F., Kocica M.J., Corno A.F., Komeda M., Carreras-Cuesta F., Flotats A. et al. Towards new understanding of the heart structure and function. Eur. J. Cardiothorac. Surg. 2005; 27 (2): 191–201. DOI: 10.1016/j.ejcts.2004.11.026
- Gorodkov A.Yu., Nikolaev D.A. Analysis of the dynamic characteristics of swirling blood flow in the aorta based on the measurement of the geometric parameters of the flow channel using magnetic resonance imaging. The Bulletin of Bakoulev Center. Cardiovascular Diseases. 2003; 4 (9): 67–9 (in Russ.).
- Ohayon J., Chadwick R.S. Theoretical analysis of the effects of a radial activation wave and twisting motion on the mechanics of the left ventricle. Biorheology. 1988; 25 (3): 435–47. DOI: 10.3233/BIR-1988-25305
- Caro C.G., Pedley T.J., Schroter R.C., Seed W.A. The mechanics of the circulation. Moscow; 1981: P. 356–9 (in Russ.).
- Kassab G.S. Biomechanics of the cardiovascular system: the aorta as an illustratory example. J. Royal Soc. Interface. 2006; 3: 719–40. DOI: 10.1098/rsif.2006.0138 10. Sobin S.S., Chen P.C.Y. Vascular cylindricity in animals and plants. Ann. Biomed. Eng. 1997; 25: S–S32. DOI: 10.1007/BF02647361
- Bokeria L.A., Gorodkov A.Yu., Kiknadze G.I., Sokolov M.V. Analysis of the structure of blood flow in the left ventricle of the heart and aorta based on exact solutions of non-stationary equations of viscous fluid hydrodynamics. The Bulletin of Bakoulev Center. Cardiovascular Diseases. 2002; 3 (7): 99–112 (in Russ.).
- Black M.M., Нose D.R., Lowford P.V. The origin and significance of secondary flows in the aortic arch. J. Med. Eng. Technol. 1995; 19 (6): 192–7. DOI: 10.3109/03091909509030288
- Zakharov V.N., Poluektov L.V., Kremlev N.I., Gunin A.G., Samoylov V.A. Biohydrodynamics of blood movement in the cavities of the heart (clinical and experimental research). Novosibirsk; 1989: 31 (in Russ.).
- Bagaev S.N., Zakharov V.N., Orlov V.A. Fundamental phenomena and laws in the structural and functional organization of the cardiovascular system. Atherosclerosis. 2011; 7 (2): 68–88 (in Russ.).
- Segodol L. Velocity distribution model for normal blood flow in the human ascending aorta. Med. Biol. Eng. Comput. 1991; 29 (4): 489–92. DOI: 10.1007/bf02442319
- Bogren H.G., Mohiaddin R.H., Yang G.Z., Kilner P.J., Firmin D.N. Magnetic resonance velocity vector mapping of blood flow in thoracic aortic aneurysms and grafts. J. Thorac. Cardiovasc. Surg. 1995; 110 (3): 710–14. DOI: 10.1016/s0022-5223(95)70102-8
- Markl M., Kilner P.J., Ebbers T. Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. J. Cardiovasc. Magnet. Reson. 2011; 13 (1): 1–11. DOI: 10.1186/1532-429x-13-7
- Oechtering T.H., Hons C.F., Sieren M., Hunold P., Hennemuth A., Huelebrand M. et al. Time-resolved 3-dimensional magnetic resonance phase contrast imaging (4D Flow MRI) analysis of hemodynamics in valve-sparing aortic root repair with an anatomically shaped sinus prosthesis. J. Thorac. Cardiovasc. Surg. 2016; 152 (Iss. 2): 418–27.e1. DOI: 10.1016/j.jtcvs.2016.04.029
- Markl M., Draney M.T., Miller D.C., Levin J.M., Williamson E.E., Pelc N.J. et al. Time-resolved three-dimensional magnetic resonance velocity mapping of aortic flow in healthy volunteers and patients after valve-sparing aortic root replacement. J. Thorac. Cardiovasc. Surg. 2005; 130 (2): 456–63. DOI: 10.1016/j.jtcvs.2004.08.056
- Kvitting J.P., Ebbers T., Wigstrom L., Engvall J., Olin C.L., Bolger A.F. Flow patterns in the aortic root and the aorta studied with time-resolved, 3-dimensional, phase-contrast magnetic resonance imaging: implications for aortic valve-sparing surgery. J. Thorac. Cardiovasc. Surg. 2004; 127 (6): 1602–7. DOI: 10.1016/j.jtcvs.2003.10.042
- Boсkeria L.A., Gorodkov A.Yu., Nikolaev D.A., Kiknadze G.I., Gachechiladze I.A. Analysis of the structure of blood flow in the left ventricle of the heart and aorta based on exact solutions of non-stationary equations of viscous fluid hydrodynamics. The Bulletin of Bakoulev Center. Cardiovascular Diseases. 2003; 4 (9): 70–4 (in Russ.).
- Matsumoto Y., Honda T., Hamada M., Toyama T., Matsuoka H., Hiwada K. Evaluation of short axial blood flow pattern in thoracic descending aorta by use of tagging cine magnetic resonance. Angiology. J. Vasc. Dis. 1994; 45 (11): 917–22. DOI: 10.1177/000331979404501102
- Bogren H.G., Buonocore M.H. Complex flow patterns in great vessels: a review. Int. J. Card. Imaging. 1999; 15 (2): 105–13. DOI: 10.1023/a:1006281923372
- Maier S.E., Scheidegger M.B., Liu K., Schneider E., Bollinger A., Boesiger P. Renal flow velocity mapping with MR imaging. J. Magn. Reson. Imaging. 1995; 5 (6): 669–76. DOI: 10.1002/jmri.1880050609
- Kiknadze G.I., Krasnov Yu.K. Evolution of spoutlike flows of a viscous fluid. Reports of Academy of Sciences USSR. 1986; 290 (6): 1315–9 (in Russ.).
- Bockeria L.A., Kiknadze G.I., Gachechiladze I.A., Gorodkov A.Yu. Application of tornado-flow fundamental hydrodynamic theory to the study of blood flow in the heart: further development of tornado-like jet technology. In: ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE: 2011: 287–96. DOI: 10.1115/IMECE2011-63769
- Zhorzholiani Sh.T., Mironov A.A., Talygin E.A., Tsygankov Yu.M., Agafonov A.V., Kiknadze G.I. et al. Analysis of dynamic geometric configuration of the aortic channel from the perspective of tornado-like flow organization of blood flow. Bull. Exp. Biol. Med. 2018; 164 (4): 514. DOI: 10.1007/s10517-018-4023-z (in Russ.).
- Zhorzholiani S.T., Talygin E.A., Krasheninnikov S.V., Tsygankov Yu.M., Agafonov A.V., Gorodkov A.Yu. et al. Elasticity change along the aorta is a mechanism for supporting the physiological self-organization of tornadolike blood flow. Human Physiology. 2018; 44 (5): 532–40. DOI: 10.1134/S0362119718050171 (in Russ.).
About the authors
- Vladimir A. Mironenko, Dr. Med. Sci., Head of Department; ORCID
- Mark A. Soborov, Cand. Med. Sci., Researcher; ORCID
- Aleksandr Yu. Gorodkov, Dr. Biol. Sci., Head of Laboratory; ORCID
- Leo A. Bockeria, Academician of RAS and RAMS, President; ORCID