Аннотация
Само по себе ограничение утолщения и укорочения миокардиального волокна не может полностью объяснить снижение объема левого желудочка (ЛЖ) во время периода изгнания. Эффективное сокращение достигается спиральной ориентацией миокардиальных волокон, которая зависит от состояния и направления несокращающихся компонентов: интраи экстрасаркомерного цитоскелета, экстрацеллюлярного матрикса. Сохранение фракции выброса (ФВ) при сердечной недостаточности (СН) происходит из-за наличия нормальной эллипсоидной конфигурации ЛЖ и спиральной ориентации волокон миокарда. В то же время уменьшение ФВ в результате сферификации ЛЖ связано с нарушенной ориентацией волокон миокарда, увеличением угла между волокнами более 60° за счет ремоделирования экстрацеллюлярной сети. Этот механизм объясняется тем фактом, что биомаркеры воспаления и фиброза, влияющие на экстрацеллюлярный матрикс, являются мощными предикторами негативного ремоделирования со снижением ФВ и формированием сердечной недостаточности с низкой ФВ (СНнФВ), а стратегии медикаментозной терапии при СНнФВ, задерживающие или ингибирующие реконструкцию внеклеточного матрикса, признаны действенными, тогда как препараты, увеличивающие миокардиальную сократимость, неэффективны. Таким образом, в будущем терапия при СН должна обеспечивать не только восстановление сокращающегося миокарда, но и сохранение структуры несокращающихся компонентов матрикса ЛЖ.
Литература
- Cikes M., Solomon S.D. Beyond ejection fraction: an integrative approach for assessment of cardiac structure and function in heart failure. Eur. Heart J. 2016; 37: 1642–50. DOI: 10.1093/eurheartj/ehv510
- Ponikowski P., Voors A.A., Anker S.D., Bueno H., Cleland J.G., Coats A.J. et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: The task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Eur. J. Heart Fail. 2016; 18: 891–975. DOI: 10.1093/eurheartj/ehw128
- Sonnenblick E.H. Determinants of active state in heart muscle: force, velocity, instantaneous muscle length, time. Fed. Proc. 1965; 24: 1396–409.
- Sallin E.A. Fiber orientation and ejection fraction in the human left ventricle. Biophys. J. 1969; 9: 954–64. DOI: 10.1016/S0006-3495(69)86429-5
- ngels N.B. Jr. Myocardial fiber architecture and left ventricular function. Technol. Health Care. 1997; 5: 45–52. DOI: 10.3233/THC-1997-51-205
- Streeter D.D. Jr, Spotnitz H.M., Patel D.P., Ross J. Jr, Sonnenblick E.H. Fiber orientation in the canine left ventricle during diastole and systole. Circ. Res. 1969; 24: 339–47. DOI: 10.1161/01.res.24.3.339
- Greenbaum R.A., Ho S.Y., Gibson D.G., Becker A.E., Anderson R.H. Left ventricular fibre architecture in man. Br. Heart J. 1981; 45: 248–63. DOI: 10.1136/hrt.45.3.248
- Anderson R.H., Ho S.Y., Redmann K., SanchezQuintana D., Lunkenheimer P.P. The anatomical arrangement of the myocardial cells making up the ventricular mass. Eur. J. Cardiothorac. Surg. 2005; 28: 517–25. DOI: 10.1016/j.ejcts.2005.06.043
- Sengupta P.P., Tajik A.J., Chandrasekaran K., Khandheria B.K. Twist mechanics of the left ventricle: principles and application. JACC Cardiovasc. Imaging. 2008; 1: 366–76. DOI: 10.1016/j.jcmg.2008.02.006
- Rademakers F.E., Rogers W.J., Guier W.H., Hutchins G.M., Siu C.O., Weisfeldt M.L et al. Relation of regional cross-fiber shortening to wall thickening in the intact heart. Three-dimensional strain analysis by NMR tagging. Circulation. 1994; 89: 1174–82. DOI: 10.1161/01.CIR.89.3.1174
- MacGowan G.A., Shapiro E.P., Azhari H., Siu C.O., Hees P.S., Hutchins G.M. et al. Noninvasive measurement of shortening in the fiber and cross-fiber directions in the normal human left ventricle and in idiopathic dilated cardiomyopathy. Circulation. 1997; 96: 535–41. DOI: 10.1161/01.CIR.96.2.535
- Waldman L.K., Nosan D., Villarreal F., Covell J.W. Relation between transmural deformation and local myofiber direction in canine left ventricle. Circ. Res. 1988; 63: 550–62. DOI: 10.1161/01.RES.63.3.550
- MacGowan G.A., Parikh J.D., Hollingsworth K.G. Diffusion tensor magnetic resonance imaging of the heart: looking into the layers of the myocardium. J. Am. Coll. Cardiol. 2017; 69: 677–8. DOI: 10.1016/j.jacc.2016.10.080
- LeGrice I.J., Takayama Y., Covell J.W. Transverse shear along myocardial cleavage planes provides a mechanism for normal systolic wall thickening. Circ. Res. 1995; 77: 182–93. DOI: 10.1161/01.RES.77.1.182
- Cheng A., Nguyen T.C., Malinowski M., Daughters G.T., Miller D.C., Ingels N.B. Jr. Heterogeneity of left ventricular wall thickening mechanisms. Circulation. 2008; 118: 713–21. DOI: 10.1161/CIRCULATIONAHA.107.744623
- Torrent-Guasp F., Ballester M., Buckberg G.D., Carreras F., Flotats A., Carrio I. et al. Spatial orientation of the ventricular muscle band: physiologic contribution and surgical implications. J. Thorac. Cardiovasc. Surg. 2001; 122: 389–92. DOI: 10.1067/mtc.2001.113745
- Lunkenheimer P.P., Niederer P., Sanchez-Quintana D., Murillo M., Smerup M. Models of ventricular structure and function reviewed for clinical cardiologists. J. Cardiovasc. Transl. Res. 2013; 6: 176–86. DOI: 10.1007/s12265-012-9440-1
- Nesser H.J., Mor-Avi V., Gorissen W., Weinert L., Steringer-Mascherbauer R., Niel J. et al. Quantification of left ventricular volumes using three-dimensional echocardiographic speckle tracking: comparison with MRI. Eur. Heart J. 2009; 30: 1565–73. DOI: 10.1093/eurheartj/ehp187
- Omar A.M., Bansal M., Sengupta P.P. Advances in echocardiographic imaging in heart failure with reduced and preserved ejection fraction. Circ. Res. 2016; 119: 357–74. DOI: 10.1161/CIRCRESAHA.116.309128
- Jeung M.Y., Germain P., Croisille P., Elghannudi S., Roy C., Gangi A. Myocardial tagging with MR imaging: overview of normal and pathologic findings. Radiographics. 2012; 32: 1381–98. DOI: 10.1148/rg.325115098
- Maciver D.H. The relative impact of circumferential and longitudinal shortening on left ventricular ejection fraction and stroke volume. Exp. Clin. Cardiol. 2012; 17: 5–11.
- Linke W.A., Hamdani N. Gigantic business: titin properties and function through thick and thin. Circ. Res. 2014; 114: 1052–68. DOI: 10.1161/CIRCRESAHA.114.301286
- Gerull B. The rapidly evolving role of titin in cardiac physiology and cardiomyopathy. Can. J. Cardiol. 2015; 31: 1351–9. DOI: 10.1016/j.cjca.2015.08.016
- Lange S., Ehler E., Gautel M. From A to Z and back? Multicompartment proteins in the sarcomere. Trends Cell. Biol. 2006; 16: 11–8. DOI: 10.1016/j.tcb.2005.11.007
- Kostin S., Hein S., Arnon E., Scholz D., Schaper J. The cytoskeleton and related proteins in the human failing heart. Heart Fail. Rev. 2000; 5: 271–80. DOI: 10.1023/A:1009813621103
- Fletcher D.A., Mullins R.D. Cell mechanics and the cytoskeleton. Nature. 2010; 463: 485–92. DOI: 10.1038/nature08908
- Kuznetsov A.V., Javadov S., Guzun R., Grimm M., Saks V. Cytoskeleton and regulation of mitochondrial function: the role of beta-tubulin II. Front. Physiol. 2013; 4: 82. DOI: 10.3389/fphys.2013.00082627
- Takawale A., Sakamuri S.S., Kassiri Z. Extracellular matrix communication and turnover in cardiac physiology and pathology. Compr. Physiol. 2015; 5: 687–719. DOI: 10.1002/cphy.c140045
- Rienks M., Papageorgiou A.P., Frangogiannis N.G., Heymans S. Myocardial extracellular matrix: an everchanging and diverse entity. Circ. Res. 2014; 114: 872–88. DOI: 10.1161/CIRCRESAHA.114.302533
- Kraigher-Krainer E., Shah A.M., Gupta D.K., Santos A., Claggett B., Pieske B. et al. PARAMOUNT Investigators. Impaired systolic function by strain imaging in heart failure with preserved ejection fraction. J. Am. Coll. Cardiol. 2014; 63: 447–56. DOI: 10.1016/j.jacc.2013.09.052
- Park S.J., Miyazaki C., Bruce C.J., Ommen S., Miller F.A., Oh J.K. Left ventricular torsion by twodimensional speckle tracking echocardiography in patients with diastolic dysfunction and normal ejection fraction. J. Am. Soc. Echocardiogr. 2008; 21: 1129–37. DOI: 10.1016/j.echo.2008.04.002
- Wang J., Khoury D.S., Yue Y., Torre-Amione G., Nagueh S.F. Preserved left ventricular twist and circumferential deformation, but depressed longitudinal and radial deformation in patients with diastolic heart failure. Eur. Heart J. 2008; 29: 1283–9. DOI: 10.1093/eurheartj/ehn141
- Chang S.N., Lai Y.H., Yen C.H., Tsai C.T., Lin J.W., Bulwer B.E. et al. Cardiac mechanics and ventricular twist by three-dimensional strain analysis in relation to B-type natriuretic peptide as a clinical prognosticator for heart failure patients. PLoS One. 2014; 9: e115260. DOI: 10.1371/journal.pone.0115260
- Yip G.W., Zhang Q., Xie J.M., Liang Y.J., Liu Y.M., Yan B. et al. Resting global and regional left ventricular contractility in patients with heart failure and normal ejection fraction: insights from speckle-tracking echocardiography. Heart. 2011; 97: 287–94. DOI: 10.1136/hrt.2010.205815
- Pearlman E.S., Weber K.T., Janicki J.S. Quantitative histology of the hypertrophied human heart. Fed. Proc. 1981; 40: 2042–7.
- Donal E., Lund L.H., Oger E., Hage C., Persson H., Reynaud A. et al.; KaRen Investigators. New echocardiographic predictors of clinical outcome in patients presenting with heart failure and a preserved left ventricular ejection fraction: a subanalysis of the Ka (Karolinska) Ren (Rennes) Study. Eur. J. Heart Fail. 2015; 17: 680–8. DOI: 10.1002/ejhf.291
- Bull M., Methawasin M., Strom J., Nair P., Hutchinson K., Granzier H. Alternative splicing of titin restores diastolic function in an HFpEF-like genetic murine model (Ttn_IAjxn). Circ. Res. 2016; 119: 764–72. DOI: 10.1161/CIRCRESAHA.116.308904
- Ikonomidis I., Tzortzis S., Triantafyllidi H., Parissis J., Papadopoulos C., Venetsanou K. et al. Association of impaired left ventricular twisting-untwisting with vascular dysfunction, neurohumoral activation and impaired exercise capacity in hypertensive heart disease. Eur. J. Heart Fail. 2015; 17: 1240–51. DOI: 10.1002/ejhf.403
- Duca F., Kammerlander A.A., Zotter-Tufaro C., Aschauer S., Schwaiger M.L., Marzluf B.A. et al. Interstitial fibrosis, functional status, and outcomes in heart failure with preserved ejection fraction: insights from a prospective cardiac magnetic resonance imaging study. Circ. Cardiovasc. Imaging. 2016; 9: e005277. DOI: 10.1161/CIRCIMAGING.116.005277
- De Simone G., Devereux R.B. Rationale of echocardiographic assessment of left ventricular wall stress and midwall mechanics in hypertensive heart disease. Eur. J. Echocardiogr. 2002; 3: 192–8. DOI: 10.1053/euje.3.3.192
- Dunlay S.M., Roger V.L., Weston S.A., Jiang R., Redfield M.M. Longitudinal changes in ejection fraction in heart failure patients with preserved and reduced ejection fraction. Circ. Heart Fail. 2012; 5: 720–6. DOI: 10.1161/CIRCHEARTFAILURE.111.966366
- Katz A.M., Rolett E.L. Heart failure: when form fails to follow function. Eur. Heart J. 2016; 37: 449–54. DOI: 10.1093/eurheartj/ehv548
- Konstam M.A., Kramer D.G., Patel A.R., Maron M.S., Udelson J.E. Left ventricular remodeling in heart failure: current concepts in clinical significance and assessment. JACC Cardiovasc. Imaging. 2011; 4: 98–108. DOI: 10.1016/j.jcmg.2010.10.008
- Shah A.M., Mann D.L. In search of new therapeutic targets and strategies for heart failure: recent advances in basic science. Lancet. 2011; 378: 704–12. DOI: 10.1016/S0140-6736(11)60894-5
- Ho S.Y. Anatomy and myoarchitecture of the left ventricular wall in normal and in disease. Eur. J. Echocardiogr. 2009; 10: iii3–iii7. DOI: 10.1093/ejechocard/jep159
- Opie L.H., Commerford P.J., Gersh B.J., Pfeffer M.A. Controversies in ventricular remodelling. Lancet. 2006; 367: 356–67. DOI: 10.1016/S0140-6736(06)68074-4
- Kanzaki H., Nakatani S., Yamada N., Urayama S., Miyatake K., Kitakaze M. Impaired systolic torsion in dilated cardiomyopathy: reversal of apical rotation at mid-systole characterized with magnetic resonance tagging method. Basic Res. Cardiol. 2006; 101: 465–70. DOI: 10.1007/s00395-006-0603-6
- Pacileo G., Baldini L., Limongelli G., Di Salvo G., Iacomino M., Capogrosso C. et al. Prolonged left ventricular twist in cardiomyopathies: a potential link between systolic and diastolic dysfunction. Eur. J. Echocardiogr. 2011; 12: 841–9. DOI: 10.1093/ejechocard/jer148
- Trumble D.R., McGregor W.E., Kerckhoffs R.C., Waldman L.K. Cardiac assist with a twist: apical torsion as a means to improve failing heart function. J. Biomech. Eng. 2011; 133: 101003. DOI: 10.1115/1.4005169
- Marchal P., Lairez O., Cognet T., Chabbert V., Barrier P., Berry M. et al. Relationship between left ventricular sphericity and trabeculation indexes in patients with dilated cardiomyopathy: a cardiac magnetic resonance study. Eur. Heart J. Cardiovasc. Imaging. 2013; 14: 914–20. DOI: 10.1093/ehjci/jet064
- Van Dalen B.M., Kauer F., Vletter W.B., Soliman O.I., van der Zwaan H.B., Ten Cate F.J. et al. Influence of cardiac shape on left ventricular twist. J. Appl. Physiol. 1985: 2010; 108: 146–51. DOI: 10.1152/japplphysiol.00419. 2009
- Von Deuster C., Sammut E., Asner L., Nordsletten D., Lamata P., Stoeck C.T. et al. Studying dynamic myofiber aggregate reorientation in dilated cardiomyopathy using in vivo magnetic resonance diffusion tensor imaging. Circ. Cardiovasc. Imaging. 2016; 9: e005018. DOI: 10.1161/CIRCIMAGING.116.005018
- Nielles-Vallespin S., Khalique Z., Ferreira P.F., de Silva R., Scott A.D., Kilner P. et al. Assessment of myocardial microstructural dynamics by in vivo diffusion tensor cardiac magnetic resonance. J. Am. Coll. Cardiol. 2017; 69: 661–76. DOI: 10.1016/j.jacc.2016.11.051
- Houser S.R., Margulies K.B. Is depressed myocyte contractility centrally involved in heart failure? Circ. Res. 2003; 92: 350–8. DOI: 10.1161/01.RES.0000060027.40275.A6
- Motiwala S.R., Gaggin H.K. Biomarkers to predict reverse remodeling and myocardial recovery in heart failure. Curr. Heart Fail. Rep. 2016; 13: 207–18. DOI: 10.1007/s11897-016-0303-y
- Sanada S., Hakuno D., Higgins L.J., Schreiter E.R., McKenzie A.N., Lee R.T. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J. Clin. Invest. 2007; 117: 1538–49. DOI: 10.1172/JCI30634
- Lupon J., Gaggin H.K., de Antonio M., Domingo M., Galan A., Zamora E. et al. Biomarker assist score for reverse remodeling prediction in heart failure: the ST2-R2 score. Int. J. Cardiol. 2015; 184: 337–43. DOI: 10.1016/j.ijcard.2015.02.019
- Lupon J., Sanders-van Wijk S., Januzzi J.L., de Antonio M., Gaggin H.K., Pfisterer M. et al. Prediction of survival and magnitude of reverse remodeling using the ST2-R2 score in heart failure: a multicenter study. Int. J. Cardiol. 2016; 204: 242–7. DOI: 10.1016/j.ijcard.2015.11.163
- Gyongyosi M., Winkler J., Ramos I., Do Q.T., Firat H., McDonald K. et al. Myocardial fibrosis: biomedical research from bench to bedside. Eur. J. Heart Fail. 2017; 19: 177–91. DOI: 10.1002/ejhf.696
- Wang J., Gong X., Chen H., Qin S., Zhou N., Su Y., Ge J. Effect of cardiac resynchronization therapy on myocardial fibrosis and relevant cytokines in a canine model with experimental heart failure. J. Cardiovasc. Electrophysiol. 2017; 28: 438–45. DOI: 10.1111/jce.13171
- Velazquez E.J., Lee K.L., Jones R.H., Al-Khalidi H.R., Hill J.A., Panza J.A. et al.; STICHES Investigators. Coronary-artery bypass surgery in patients with ischemic cardiomyopathy. N. Engl. J. Med. 2016; 374: 1511–20. DOI: 10.1056/NEJMoa1602001
- Bonow R.O., Maurer G., Lee K.L., Holly T.A., Binkley P.F., Desvigne-Nickens P. et al.; and STICH Trial Investigators. Myocardial viability and survival in ischemic left ventricular dysfunction. N. Engl. J. Med. 2011; 364: 1617–25. DOI: 10.1056/NEJMoa1100358
- Page B.J., Banas M.D., Suzuki G., Weil B.R., Young R.F., Fallavollita J.A. et al. Revascularization of chronic hibernating myocardium stimulates myocyte proliferation and partially reverses chronic adaptations to ischemia. J. Am. Coll. Cardiol. 2015; 65: 684–97. DOI: 10.1016/j.jacc.2014.11.040
- Deng M.C., Edwards L.B., Hertz M.I., Rowe A.W., Keck B.M., Kormos R. et al. Mechanical circulatory support device database of the International Society for Heart and Lung Transplantation: second annual report – 2004. J. Heart Lung Transplant. 2004; 23: 1027–34. DOI: 10.1016/j.healun.2004.08.001
- Lok S.I., Nous F.M., van Kuik J., van der Weide P., Winkens B., Kemperman H. et al. Myocardial fibrosis and pro-fibrotic markers in end-stage heart failure patients during continuous-flow left ventricular assist device support. Eur. J. Cardiothorac. Surg. 2015; 48: 407–15. DOI: 10.1093/ejcts/ezu539
- Ferrari R., Bohm M., Cleland J.G., Paulus W.J., Pieske B., Rapezzi C., Tavazzi L. Heart failure with preserved ejection fraction: uncertainties and dilemmas. Eur. J. Heart Fail. 2015; 17: 665–71. DOI: 10.1002/ejhf.304
- Van Riet E.E., Hoes A.W., Wagenaar K.P., Limburg A., Landman M.A., Rutten F.H. Epidemiology of heart failure: the prevalence of heart failure and ventricular dysfunction in older adults over time. A systematic review. Eur. J. Heart Fail. 2016; 18: 242–52. DOI: 10.1002/ejhf.483
- Borlaug B.A., Redfield M.M. Diastolic and systolic heart failure are distinct phenotypes within the heart failure spectrum. Circulation. 2011; 123: 2006–13; disc. 2014. DOI: 10.1161/CIRCULATIONAHA.110.954388
- De Keulenaer G.W., Brutsaert D.L. Systolic and diastolic heart failure are overlapping phenotypes within the heart failure spectrum. Circulation. 2011; 123: 1996–2004. DOI: 10.1161/CIRCULATIONAHA.110.981431
Об авторах
- Аверина Ирина Ивановна, доктор мед. наук, ст. науч. сотр., кардиолог, ORCID
- Бокерия Ольга Леонидовна, доктор мед. наук, профессор, чл.-корр. РАН, ORCID
- Бокерия Лео Антонович, академик РАН и РАМН, президент Центра, ORCID