Аннотация
Аортокоронарное шунтирование (АКШ) является общепризнанным и высокоэффективным методом лечения ишемической болезни сердца. Основная задача хирургического лечения заключается в создании надежных, качественных и, главное, долговечных путей обхода стенозированного участка или окклюзии коронарной артерии. Оптимальный выбор кондуита – один из ключевых моментов операции АКШ, который оказывает влияние на продолжительность и качество дальнейшей жизни пациента. Многообразие факторов, определяющих хорошее функционирование кондуита, ставит сложный вопрос перед хирургами: какой трансплантат выбрать в той или иной ситуации.
Учитывая ограничения использования венозных кондуитов при хирургическом лечении ИБС, в коронарной хирургии стали проводить многососудистую артериальную реваскуляризацию с использованием артериальных кондуитов (правая и левая грудные, лучевая, желудочно-сальниковая артерии). Несмотря на информацию о преимуществе множественного аутоартериального шунтирования для отдаленного результата, статистические данные из Европейского союза, США и России свидетельствуют об относительно небольшом количестве операций коронарного шунтирования с применением нескольких трансплантатов из аутоартерий. Наблюдательные исследования показали, что использование артериальных трансплантатов при АКШ дает более хороший долгосрочный эффект, чем венозные трансплантаты, однако до настоящего времени рандомизированными исследованиями это не было доказано.
Данная статья подводит итог полувекового использования внутренних грудных артерий, аутовен, лучевых артерий в качестве кондуитов для коронарных артерий на основании рандомизированных исследований и метаанализов.
Литература
- Казарян А.В., Сигаев И.Ю. Выбор кондуитов при повторном коронарном шунтировании. Анналы хирургии. 2017; 22 (4): 197–204. DOI: 10.18821/1560- 9502-2017-22-4-197-204 Kazaryan A.V., Sygaev I.Yu. The choice of conduits for repeated coronary bypass. Russian Journal of Surgery. 2017; 22 (4): 197–204 (in Russ.). DOI: 10.18821/1560- 9502-2017-22-4-197-204
- Neumann F.-J., Sousa-Uva M., Ahlsson A., Alfonso F., Banning A.P., Benedetto U. et al. 2018 ESC/EACTS. Guidelines on myocardial revascularization. Eur. Heart J. 2018: ehy394. DOI: 10.1093/eurheartj/ehy394
- Konstantinov I.E. Robert H. Goetz: The surgeon who performed the first successful clinical coronary artery bypass operation. Ann. Thorac. Surg. 2000; 69 (6): 1966–72. DOI: 10.1016/S0003-4975(00)01264-9
- Vineberg A.M. Development of anastomosis between coronary vessels and transplanted internal mammary artery. Can. Med. Assoc. J. 1946; 55: 117–9. 5. Green G.E., Stertzer S.H., Reppert E.H. Coronary arterial bypass grafts. Ann. Thorac. Surg. 1968; 5: 443–50. DOI: 10.1016/S0003-4975(10)66377-1
- Favaloro R.G. Saphenous vein autograft replacement of severe segmental coronary artery occlusion – operative technique. Ann. Thorac. Surg. 1968; 5: 334–9. DOI: 10.1016/S0003-4975(10)66351-5
- Taggart D.P. The role of multiple arterial grafts in CABG: All roads lead to ROMA. J. Am. Coll. Card. 2019; 74 (18): 2249–53. DOI: 10.1016/j.jacc.2019.09.016 8. He G.W., Yang C.Q. Comparison among arterial grafts and coronary artery. An attempt at functional classification. J. Thorac. Cardiovasc. Surg. 1995; 109: 707–15. DOI: 10.1016/S0022-5223(95)70352-7 9. He G.-W. Arterial grafts for coronary artery bypass grafting: biological characteristics, functional classification, and clinical choice. Ann. Thorac. Surg. 1999; 67 (1): 277–84. DOI: 10.1016/S0003-4975(98)01207-7
- Gelsomino S., Curello S., Lorusso R., Maessen J.G., Hoorntje J.C.A. Contemporary use of arterial and venous conduits in coronary artery bypass grafting: anatomical, functional and clinical aspects. Neth. Heart J. 2017; 25 (1): 4–13. DOI: 10.1007/s12471-016-0919-2 11. Loop F.D. Internal-thoracic-artery grafts. Biologically better coronary arteries. N. Engl. J. Med. 1996; 334 (4): 263–5. DOI: 10.1056/NEJM19960125334041
- Windecker S., Kohl Ph., Alfonso F., Collet J.-Ph., Cremer J., Falk V. Authors/Task Force members, ESC/EACTS Guidelines on myocardial revascularization: The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardiothoracic Surgery (EACTS), developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur. Heart J. 2014; 35 (37): 2541–619. DOI: 10.1093/eurheartj/ehu278
- He G.-W., Liu Z.G. Comparison of nitric oxide release and endothelium-derived hyperpolarizing factor-mediated hyperpolarisation between human radial and internal mammary arteries. Circulation. 2001; 104 (12, Suppl. 1): I344–9. DOI: 10.1161/circ.104.suppl_1.I-344
- Canham P.B., Finlay H.M., Boughner D.R. Contrasting structure of the saphenous vein and internal mammary artery used as coronary bypass vessels. Cardiovasc. Res. 1997; 34 (3): 557–67. DOI: 10.1016/S0008-6363(97)00056-4 15. Taggart D.P. Current status of arterial grafts for coronary artery bypass grafting. Ann. Cardiothorac. Surg. 2013; 2: 427–30. DOI: 10.3978/j.issn.2225-319X.2013.07.2
- Otsuka F., Yahagi K., Sakakura K., Virmani R. Why is the mammary artery so special and what protects it from atherosclerosis? Ann. Cardiothoracic. Surg. 2013; 2: 519–26. DOI: 10.3978/j.issn.2225-319X.2013.07.06
- He G.-W., Fan L., Grove K.L., Furnary A., Yang Q. Expression and function of endothelial nitric oxide synthase messenger RNA and protein are higher in internal mammary than in radial arteries. Ann. Thorac. Surg. 2011; 92: 845–50. DOI: 10.1016/j.athoracsur.2011.04.063
- Hillis L.D., Smith P.K., Anderson J.L., Bittl J.A., Bridges Ch.R., Byrne J.G. et al. Association Task Force on Practice Guidelines Report of the American College of Cardiology Foundation/American Heart 2011 ACCF/AHA Guideline for coronary artery bypass graft surgery. J. Thorac. Cardiovasc. Surg. 2012; 143 (1): 4–34. DOI: 10.1161/CIR.0b013e31823c074e
- Obed D., Fleissner F., Martens A., Cebotari S., Haverich A., Warnecke G. Revascularization with radial artery and internal thoracic artery T-grafts is associated with superior long-term survival in patients undergoing coronary artery bypass grafting. Ann. Thorac. Cardiovasc. Surg. 2020; 26 (1): 30–9. DOI: 10.5761/acts.оа.19-00226
- Carpentier A., Guermonprez J.L., Deloche A., Frechette C., Du Bost Ch. The aorta-to-coronary radial artery bypass graft: A technique avoiding pathological changes in grafts. Ann. Thorac. Surg. 1973; 16 (2): 111–21. DOI: 10.1016/S0003-4975(10)65825-0
- Van Son Smedts J.A., Vincent J.G., van Lier H.J., Kubat K. Comparative anatomic studies of various arterial conduits for myocardial revascularization. J. Thorac. Cardiovasc. Surg. 1990; 99 (4): 703–7.
- Possati G., Gaudino M., Prati F., Alessandrini F., Trani C., Glieca F. et al. Long-term results of the radial artery used for myocardial revascularization. Circulation. 2003; 108 (11): 1350–4. DOI: 10.1161/01.CIR. 0000087402.13786.D0
- Cohen G., Tamariz M.G., Sever J., Liaghati N., Guru B.V., Christakis G.T. The radial artery versus the saphenous vein graft in contemporary CABG: a case-matched study. Ann. Thorac. Surg. 2001; 71 (1): 180–5; disc. 185–6. DOI: 10.1016/s0003-4975(00)02285-2
- Fremes S.E., Christakis G.T., Del Rizzo D.F., Musiani A., Mallidi H., Goldman B.S. The technique of radial artery bypass grafting and early clinical results. J. Card. Surg. 1995; 10 (5): 537–44. DOI: 10.1111/j.1540-8191.1995.tb00629.x
- Tatulis J., Buxton B.F., Fuller J. Bilateral radial artery grafts in coronary reconstruction: methodology and early results in 261 patients. Ann. Thorac. Surg. 1988; 66 (3): 714–9; disc. 720. DOI: 10.1016/S0003-4975(98)00668-7
- Adnan G., Yandrapalli S. Radial artery coronary bypass. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2021. 27. Altshuler P., Nahirniak Ph., Welle N.J. Saphenous vein grafts. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2021.
- Aldea G.S., Bakaeen F.G., Pal J., Fremes S., Head S.J., Sabik J. et al. Society of Thoracic Surgeons. The Society of Thoracic Surgeons Clinical practice guidelines on arterial conduits for coronary artery bypass grafting. Ann. Thorac. Surg. 2016; 101 (2): 8019. DOI: 10.1016/j.athoracsur.2015.09.100
- Sarzaeem M.R., Mandegar M.H., Roshanali F., Vedadian A., Saidi B., Alaeddini F. et al. Scoring system for predicting saphenous vein graft patency in coronary artery bypass grafting. Tex. Heart Inst. J. 2010; 37 (5): 525–30.
- Fitzgibbon G.M., Kafka H.P., Leach A.J., Keon W.J., Hooper G.D., Burton J.R. Coronary bypass graft fate and patient outcome: angiographic follow-up of 5,065 grafts related to survival and reoperation in 1,388 patients during 25 years. J. Am. Coll. Cardiol. 1996; 28 (3): 616–26. DOI: 10.1016/0735-1097(96)00206-9 484
- Shi Y., O'Brien J.E., Mannion J.D., Morrison R.C., Chung W., Fard A., Zalewski A. Remodeling of autologous saphenous vein grafts. The role of perivascular myofibroblasts. Circulation. 1997; 95 (12): 2684–9. DOI: 10.1161/01.cir.95.12.2684
- Chello M., Mastroroberto P., Perticone F., Celi V., Colonna A. Nitric oxide modulation of neutrophil-endothelium interaction: difference between arterial and venous coronary bypass grafts. J. Am. Coll. Cardiol. 1998; 31 (Issue 4): 823–6. DOI: 10.1016/S0735-1097(97)00560-3
- Kockx M.M., De Meyer G.R., Bortier H., de Meyere N., Muhring J., Bakker A. et al. Luminal foam cell accumulation is associated with smooth muscle cell death in the intimal thickening of human saphenous vein grafts. Circulation. 1996; 94 (6): 1255–64. DOI: 10.1161/01.CIR.94.6.1255
- Gaudino M., Benedetto U., Fremes S., Biondi-Zoccai G., Sedrakyan A., Puskas J.D. et al. RADIAL Investigators. Radial-artery or saphenous-vein grafts in coronary-artery bypass surgery. N. Engl. J. Med. 2018; 378 (22): 2069–77. DOI: 10.1056/NEJMoa1716026
- Andreasen J.J., Nekrasas V., Dethlefsen C. Endoscopic vs open saphenous vein harvest for coronary artery bypass grafting: a prospective randomized trial. Eur. J. Cardiothorac. Surg. 2008; 34 (2): 384–9. DOI: 10.1016/j.ejcts.2008.04.028
- Altshuler P., Nahirniak Ph., Welle N.J. Author information. Last Update. In: Treasure Ist’land: Stot Peres Publishing; 2022.
- Schwann Th.A., Hashim S.W., Badour S., Obeid M., Engoren M., Tranbaugh R.F., Bonnell M.R. Equipoise between radial artery and right internal thoracic artery as the second arterial conduit in left internal thoracic artery-based coronary artery bypass graft surgery: a multi-institutional study. Eur. J. Cardiothorac. Surg. 2016; 49: 188–95. DOI: 10.1093/ejcts/ezv093
- Weiss A.J., Zhao S., Tian D.H., Taggart D.P., Yan T.D. A meta-analysis comparing bilateral internal mammary artery with left internal mammary artery for coronary artery bypass grafting. Ann. Cardiothorac. Surg. 2013; 2: 390–408. DOI: 10.1016/S0022-5223(99)70365-X
- Raja S.G., Benedetto U., Husain M., Soliman R., De Robertis F., Amrani M. Does grafting of the left anterior descending artery with the in situ right internal thoracic artery have an impact on late outcomes in the context of bilateral internal thoracic artery usage? J. Thorac. Cardiovasc. Surg. 2014; 148: 1275–81. DOI: 10.1016/j.jtcvs.2013.11.045
- Taggart D.P., Altman D.G., Gray A.M., Lees B., Gerry S., Benedetto U. Randomized trial of bilateral versus single internal-thoracic-artery grafts. N. Engl. J. Med. 2016; 375: 2540–9. DOI: 10.1056/NEJMoa1610021
- Taggart D.P., Benedetto U., Gerry S., Altman D.G., Gray A.M., Lees B. et al. Bilateral versus single internalthoracic-artery grafts at 10 years. N. Engl. J. Med. 2019; 380 (5): 437–46. DOI: 10.1056/NEJMoa1808783
- Raja Ch.G., Benedetto U., Jothidasan A., Jujjavarapu R.K., Ukwu U.F., De Robertis F. Right internal mammary artery versus radial artery as second arterial conduit in coronary artery bypass grafting: A case-control study of 1526 patients. Int. J. Surg. 2015; 16 (Pt B): 183–9. DOI: 10.1016/j.ijsu.2014.08.342
- Bailey C.P., Hirose T., Aventura A., Yamamoto N., Brancato R., Vera C., O'Connor R. Revascularization of the ischemic posterior myocardium. Dis. Chest. 1967; 52 (3): 273–85. DOI: 10.1378/chest.52.3.273
- Hirose T., Yaghmai M., Vera C.A. Cineangiographic visualization technique of the implanted right gastroepiploic artery technique of the posterior myocardium. Vasc. Surg. 1969; 3: 61–7. DOI: 10.1177/153857446900300203
- Isomura T., Hisatomi K., Hirano A., Hayashida N., Matsuzoe S., Ohishi K. Clinical evaluation with exercise performance in twenty patients who underwent coronary artery bypass grafting with both the gastroepiploic and internal thoracic arteries. J. Thorac. Cardiovasc. Surg. 1993; 105: 1088–94.
- Suma H., Tanabe H., Takahashi A., Horii T., Isomura T., Hirose H., Amano A. Twenty years experience with the gastroepiploic artery graft for CABG. Circulation. 2007; 116 (11, Suppl.): I18891. DOI: 10.1161/CIRCULATIONAHA.106.678813
- Gaudino M., Benedetto U., Fremes S., Ballman K., Biondi-Zoccai G., Sedrakyan A. Association of radial artery graft vs saphenous vein graft with long-term cardiovascular outcomes among patients undergoing coronary artery bypass grafting: A systematic review and metaanalysis. JAMA. 2020; 324 (2): 179–87. DOI: 10.1001/jama.2020.8228
- Desai N.D., Cohen E.A., Naylor D., Fremes S.E. A randomized comparison of radial-artery and saphenous-vein coronary bypass grafts. N. Engl. J. Med. 2004; 351: 2302–9. DOI: 10.1056/NEJMoa040982
- Gaudino M., Hameed I., Robinson N.B., Ruan Y., Rahouma M., Naik A. et al. Angiographic patency of coronary artery bypass conduits: A network meta-analysis of randomized trials. J. Am. Heart Assoc. 2021; 10 (6): e019206. DOI: 10.1161/JAHA.120.019206
- Di Lazzaro D., Ragni T., Di Manici G., Bardelli G., Da Col U., Grasselli F. et al. Noninvasive midterm follow-up of radial artery bypass grafts with 16-slice computed tomography. Ann. Thorac. Surg. 2006; 82: 44–50. DOI: 10.1016/j.athoracsur.2006.03.032
- Nappi F., Bellomo F., Nappi P., Chello C., Iervolino A., Chello M. et al. The use of radial artery for CABG: An update. Hindawi BioMed Res. Intern. 2021; ID 5528006. DOI: 10.1155/2021/5528006
- Collins P., Webb C.M., Chong C.F., Moat N.E. Radial artery versus saphenous vein patency randomized trial: five-year angiographic follow-up. Circulation. 2008; 117 (22): 2859–64. DOI: 10.1161/CIRCULATIONAHA. 107.736215
- Deb S., Cohen E.A., Singh S.K., Une D., Laupacis A., Fremes S.E. Radial artery and saphenous vein patency more than 5 years after coronary artery bypass surgery: results from RAPS (Radial Artery Patency Study). J. Am. Coll. Cardiol. 2012; 60 (1): 28–35. DOI: 10.1016/j.jacc.2012.03.037
- Tranbaugh R.F., Dimitrova K.R., Friedmann P., Geller Ch.M., Harris L.J., Stelzer P. et al. Radial artery conduits improve long-term survival after coronary artery bypass grafting. Ann. Thorac. Surg. 2010; 90 (4): 1165–72. DOI: 10.1016/j.athoracsur.2010.05.038
- Song S.-W., Sul S.-Y., Lee H.-J., Yoo K.J. Comparison of the radial artery and saphenous vein as composite grafts in off-pump coronary artery bypass grafting in el-derly patients: a randomized controlled trial. Korean Circ. J. 2012; 42 (2): 107–12. DOI: 10.4070/kcj.2012. 42.2.107
- Nasso G., Coppola R., Bonifazi R., Piancone F., Bozzetti G., Speziale G. Arterial revascularization in primary coronary artery bypass grafting: direct comparison of 4 strategies – results of the stand-in-Y mammary study. J. Thorac. Cardiovasc. Surg. 2009; 137 (5): 1093–100. DOI: 10.1016/j.jtcvs.2008.10.029
- Damgaard S., Wetterslev J., Lund J.T., Lilleø r N.B., Perko M.J., Kelbaek H. et al. One-year results of total arterial revascularization vs. conventional coronary surgery: CARRPO trial. Eur. Heart J. 2008; 30 (8): 1005–11. DOI: 10.1093/eurheartj/ehp048
- Taggart D.P., Altman D.G., Gray A.M., Lees B., Gerry S., Benedetto U., Flather M. Randomized trial of bilateral versus single internal-thoracic-artery grafts. N. Engl. J. Med. 2016; 375 (26): 2540–9. DOI: 10.1056/NEJMoa 1610021
Об авторах
- Бокерия Лео Антонович, академик РАН, президент Центра; ORCID
- Бояджян Геворг Арташесович, аспирант; ORCID