Аннотация
Эффективная нутритивная терапия при сепсисе является сложной задачей, отличающейся от стандартного подхода к кормлению пациентов в тяжелом состоянии. Нарушенный вследствие инфекционного процесса гомеостаз в организме усугубляет развитие физиологических изменений, ограничивающих метаболический потенциал из-за нарушения функции митохондрий, ввиду чего необходимо начать раннее искусственное кормление. Подсчет калорий следует проводить при помощи непрямой калориметрии с учетом базального метаболизма. Изначально необходимо ограничивать количество поступающего белка, впоследствии прогрессивно увеличивая дозу до 1,3 г/кг/сут. Возможно как энтеральное, так и парентеральное питание, в том числе в комбинации. Пациентам, получающим только парентеральное питание, требуется назначать низкие дозы глутамина, однако не рекомендуется дополнительно назначать аргинин и селен. Введение высоких доз витамина C может оказать существенное положительное влияние, но ограниченность доказательной базы не позволяет рекомендовать рутинно назначать его всем пациентам с сепсисом. С целью модуляции метаболических процессов возможно применение омега-3-полиненасыщенных жирных кислот, однако отсутствуют доказательства их большей эффективности по сравнению с липидными эмульсиями для внутривенного введения у пациентов с сепсисом. Всем пациентам с сепсисом требуется назначать рациональную нутритивную терапию, характеризующуюся совокупностью вмешательств, направленных на оптимизацию подходов к питанию и лечению, однако это является сложной задачей ввиду изменения метаболических процессов на клеточном уровне, вызванных чрезмерным воспалением и/или иммуносупрессией. Данная статья направлена на обзор современных практических рекомендаций по нутритивной поддержке при сепсисе.
Литература
- Hotchkiss R.S., Monneret G., Payen D. Sepsis-induced immunosuppression: From cellular dysfunctions to immunotherapy. Nat. Rev. Immunol. 2013; 13: 862–74. DOI: 10.1038/nri3552
- Van der Poll T., van de Veerdonk F.L., Scicluna B.P., Netea M.G. The immunopathology of sepsis and potential therapeutic targets. Nat. Rev. Immunol. 2017; 17: 407–20. DOI: 10.1038/nri.2017.36
- Singer M., Deutschman C.S., Seymour C.W., ShankarHari M., Annane D., Bauer M. et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016; 315: 801–10. DOI: 10.1001/jama.2016.0287
- Cecconi M., Evans L., Levy M., Rhodes A. Sepsis and septic shock. Lancet. 2018; 392: 75–87. DOI: 10.1016/S0140-6736(18)30696-2
- Honore P.M., Hoste E., Molnár Z., Jacobs R., JoannesBoyau O., Malbrain M.L.N.G., Forni L.G. Cytokine removal in human septic shock: Where are we and where are we going? Ann. Intensive Care. 2019; 9: 56. DOI: 10.1186/s13613-019-0530-y
- Gentile L.F., Cuenca A.G., Efron P.A., Ang D., Bihorac A., McKinley B.A. et al. Persistent inflammation and immunosuppression. J. Trauma Acute Care Surg. 2012; 72: 1491–501. DOI: 10.1097/TA.0b013e318256e000
- De Waele E., Malbrain M.L.N.G., Spapen H. Nutrition in sepsis: A bench-to-bedside review. Nutrients. 2020; 12 (2): 395. DOI: 10.3390/nu12020395
- Mira J.C., Gentile L.F., Mathias B.J., Efron P.A., Brakenridge S.C., Mohr A.M. et al. Sepsis pathophysiology, chronic critical illness, and persistent inflammation-immunosuppression and catabolism syndrome. Crit. Care Med. 2017; 45: 253–62. DOI: 10.1097/CCM. 0000000000002074
- Malbrain M.L.N.G., Van Regenmortel N., Saugel B., De Tavernier B., Van Gaal P.-J., Joannes-Boyau O. et al. Principles of fluid management and stewardship in septic shock: It is time to consider the four D’s and the four phases of fluid therapy. Ann. Intensive Care. 2018; 8: 66. DOI: 10.1186/s13613-018-0402-x
- Blaser A.R., Starkopf J., Alhazzani W., Berger M.M., Casaer M.P., Deane A.M. et al. Early enteral nutrition in critically ill patients: ESICM clinical practice guidelines. Intens. Care Med. 2017; 43: 380–98. DOI: 10.1007/s00134-016-4665-0
- De Waele E., Opsomer T., Honoré P.M., Diltoer M., Mattens S., Huyghens L., Spapen H. Measured versus calculated resting energy expenditure in critically ill adult patients. Do mathematics match the gold standard? Minerva Anestesiol. 2015; 81: 272–82.
- Zusman O., Kagan I., Bendavid I., Theilla M., Cohen J., Singer P. Predictive equations versus measured energy expenditure by indirect calorimetry: A retrospective validation. Clin. Nutr. 2019; 38: 1206–10. DOI: 10.1016/j.clnu.2018.04.020
- Bendavid I., Singer P., Theilla M., Themessl-Huber M., Sulz I., Mouhieddine M. et al. NutritionDay ICU: A 7 year worldwide prevalence study of nutrition practice in intensive care. Clin. Nutr. 2017; 36: 1122–9. DOI: 10.1016/j.clnu.2016.07.012
- Oshima T., Berger M.M., De Waele E., Guttormsen A.B., Heidegger C.-P., Hiesmayr M. et al. Indirect calorimetry in nutritional therapy. A position paper by the ICALIC study group. Clin. Nutr. 2017; 36: 651–62. DOI: 10.1016/j.clnu.2016.06.010
- Berger M.M., Pichard C. Feeding should be individualized in the critically ill patients. Curr. Opin. Crit. Care. 2019; 25: 307–13. DOI: 10.1097/MCC.0000000000000625
- Wischmeyer P.E. Nutrition therapy in sepsis. Crit. Care Clin. 2018; 34: 107–25. DOI: 10.1016/j.ccc.2017.08.008
- Coudenys E., De Waele E., Meers G., Collier H., Pen J.J. Inadequate glycemic control in patients receiving parenteral nutrition lowers survival: A retrospective observational trial. Clin. Nutr. Exp. 2018; 17: 1–7. DOI: 10.1016/j.yclnex.2017.12.001
- Uehara M., Plank L.D., Hill G.L. Components of energy expenditure in patients with severe sepsis and major trauma: A basis for clinical care. Crit. Care Med. 1999; 27: 1295–302. DOI: 10.1097/00003246-199907000-00015
- Kao C.C., Guntupalli K.K., Bandi V., Jahoor F. Wholebody CO2 production as an index of the metabolic response to sepsis. Shock. 2009; 32: 23–8. DOI: 10.1097/SHK.0b013e3181970f32
- Bertolini G., Iapichino G., Radrizzani D., Facchini R., Simini B., Bruzzone P. et al. Early enteral immunonutrition in patients with severe sepsis. Intensive Care Med. 2003; 29: 834–40. DOI: 10.1007/s00134-003-1711-5
- Heyland D.K., Dhaliwal R., Jiang X., Day A.G. Identifying critically ill patients who benefit the most from nutrition therapy: The development and initial validation of a novel risk assessment tool. Crit. Care. 2011; 15: R268. DOI: 10.1186/cc10546
- Zusman O., Theilla M., Cohen J., Kagan I., Bendavid I., Singer P. Resting energy expenditure, calorie and protein consumption in critically ill patients: A retrospective cohort study. Crit. Care. 2016; 20: 367. DOI: 10.1186/s13054-016-1538-4
- Chapman M., Peake S.L., Bellomo R., Davies A., Deane A., Horowitz M. et al. Energy-dense versus routine enteral nutrition in the critically ill. N. Engl. J. Med. 2018; 379: 1823–34. DOI: 10.1056/NEJMoa 1811687
- Preiser J.-C. High protein intake during the early phase of critical illness: Yes or no? Crit. Care. 2018; 22: 261. DOI: 10.1186/s13054-018-2196-5
- Weijs P.J., Looijaard W.G., Beishuizen A., Girbes A.R., Oudemans-van Straaten H.M. Early high protein intake is associated with low mortality and energy overfeeding with high mortality in non-septic mechanically ventilated critically ill patients. Crit. Care. 2014; 18: 701. DOI: 10.1186/s13054-014-0701-z
- Kalil A.C., Sevransky J.E., Myers D.E., Esposito C., Vandivier R.W., Eichacker P. et al. Preclinical trial of L-arginine monotherapy alone or with N-acetylcysteine in septic shock. Crit. Care Med. 2006; 34: 2719–28. DOI: 10.1097/01.CCM.0000242757.26245.03
- Weijs P.J.M., Mogensen K.M., Rawn J.D., Christopher K.B. Protein Intake, Nutritional Status and Outcomes in ICU Survivors: A Single Center Cohort Study. J. Clin. Med. 2019; 8: 43. DOI: 10.3390/jcm8010043
- Koekkoek W.A.C.K., van Setten C.H.C., Olthof L.E., Kars J.C.N.H., van Zanten A.R.H. Timing of PROTein INtake and clinical outcomes of adult critically ill patients on prolonged mechanical VENTilation: The PROTINVENT retrospective study. Clin. Nutr. 2019; 38: 883–90. DOI: 10.1016/j.clnu.2018.02.012
- Gunst J., De Bruyn A., Van den Berghe G. Glucose control in the ICU. Curr. Opin. Anaesth. 2019; 32: 156–62. DOI: 10.1097/ACO0000000000000706
- Tao W., Li P.-S., Shen Z., Shu Y.-S., Liu S. Effects of omega-3 fatty acid nutrition on mortality in septic patients: A meta-analysis of randomized controlled trials. BMC Anesthesiol. 2016; 16: 39. DOI: 10.1186/s12871-016-0200-7
- Marik P.E., Zaloga G.P. Immunonutrition in critically ill patients: A systematic review and analysis of the literature. Intensive Care Med. 2008; 34: 1980–90. DOI: 10.1007/s00134-008-1213-6
- Pradelli L., Mayer K., Muscaritoli M., Heller A.R. n-3 fatty acid-enriched parenteral nutrition regimens in elective surgical and ICU patients: a meta-analysis [published correction appears in Crit. Care. 2012; 17 (1): 405. Crit. Care. 2012; 16 (5): R184. DOI: 10.1186/сс11668
- Manzanares W., Langlois P.L., Dhaliwal R., Lemieux M., Heyland D.K. Intravenous fish oil lipid emulsions in critically ill patients: an updated systematic review and meta-analysis. Crit. Care. 2015; 19 (1): 167. DOI: 10.1186/s13054-015-0888-7
- alder P.C. Polyunsaturated fatty acids, inflammation, and immunity. Lipids. 2001; 36: 1007–24. DOI: 10.1007/s11745-001-0812-7
- Rice T.W., Wheeler A.P., Thompson B.T., Steingrub J., Hite R.D., Moss M. et al. National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Initial trophic vs full enteral feeding in patients with acute lung injury: The EDEN randomized trial. JAMA. 2012; 307: 795–803. DOI: 10.1001/jama.2012.137
- Tian F., Heighes P.T., Allingstrup M.J., Doig G.S. Early enteral nutrition provided within 24 hours of ICU admission: A meta-analysis of randomized controlled trials. Crit. Care Med. 2018; 46: 1049–56. DOI: 10.1097/CCM.0000000000003152
- Galbán C., Montejo J.C., Mesejo A., Marco P., Celaya S., Sánchez-Segura J.M. et al. An immune-enhancing enteral diet reduces mortality rate and episodes of bacteremia in septic intensive
- Casaer M.P., Wilmer A., Hermans G., Wouters P.J., Mesotten D., Van den Berghe G. Role of disease and macronutrient dose in the randomized controlled EPaNIC trial. Am. J. Respir. Crit. Care Med. 2013; 187: 247–55. DOI: 10.1164/rccm.201206-0999OC
- Zhu D., Zhang Y., Li S., Gan L., Feng H., Nie W. Enteral omega-3 fatty acid supplementation in adult patients with acute respiratory distress syndrome: A systematic review of randomized controlled trials with meta-analysis and trial sequential analysis. Intens. Care Med. 2014; 40: 504–12. DOI: 10.1007/s00134-014-3244-5
- Lewis S.R., Schofield-Robinson O.J., Alderson P., Smith A.F. Enteral versus parenteral nutrition and enteral versus a combination of enteral and parenteral nutrition for adults in the intensive care unit. Cochrane Db. Syst. Rev. 2018; 6: CD012276. DOI: 10.1002/14651858.CD012276.pub2
- Harvey S.E., Parrott F., Harrison D.A., Bear D.E., Segaran E., Beale R. et al. Trial of the route of early nutritional support in critically ill adults. N. Engl. J. Med. 2014; 371: 1673–84. DOI: 10.1056/NEJMoa1409860
- Reignier J., Boisramé-Helms J., Brisard L., Lascarrou J.-B., Ait Hssain A., Anguel N. et al. Enteral versus parenteral early nutrition in ventilated adults with shock: A randomised, controlled, multicentre, open-label, parallel-group study (NUTRIREA-2). Lancet. 2018; 391: 133–43. DOI: 10.1016/S0140-6736(17)32146-3
- Pierre J.F., Heneghan A.F., Lawson C.M., Wischmeyer P.E., Kozar R.A., Kudsk K.A. Pharmaconutrition Review. JPEN Parenter. Enter. 2013; 37: 51S–65S. DOI: 10.1177/0148607113493326
- Koekkoek K.W., Panteleon V., van Zanten A.R. Current evidence on ω-3 fatty acids in enteral nutrition in the critically ill: A systematic review and meta-analysis. Nutrition. 2019; 59: 56–68. DOI: 10.1016/j.nut.2018. 07.013
- Wischmeyer P.E. Glutamine: Mode of action in critical illness. Crit. Care Med. 2007; 35: S541–S544. DOI: 10.1097/01.CCM.0000278064.32780.D3
- Cruzat V., Macedo Rogero M., Noel Keane K., Curi R., Newsholme P. Glutamine: metabolism and immune function, supplementation and clinical translation. Nutrients. 2018; 10: 1564. DOI: 10.3390/nu10111564
- Andrews P.J.D., Avenell A., Noble D.W., Campbell M.K., Croal B.L., Simpson W.G. et al. Randomised trial of glutamine, selenium, or both, to supplement parenteral nutrition for critically ill patients. BMJ. 2011; 342: d1542. DOI: 10.1136/bmj.d1542
- Wernerman J., Kirketeig T., Andersson B., Berthelson H., Ersson A., Friberg H. et al. Scandinavian Glutamine Trial: A pragmatic multi-centre randomised clinical trial of intensive care unit patients. Acta Anaesth. Scand. 2011; 55: 812–8. DOI: 10.1111/j.1399-6576.2011.02453.x
- Heyland D., Muscedere J., Wischmeyer P.E., Cook D., Jones G., Albert M. et al. Canadian Critical Care Trials Group. A randomized trial of glutamine and antioxidants in critically ill patients. N. Engl. J. Med. 2013; 368: 1489–97. DOI: 10.1056/NEJMoa1212722
- Heyland D.K., Elke G., Cook D., Berger M.M., Wischmeyer P.E., Albert M. et al. Canadian Critical Care Trials Group Glutamine and Antioxidants in the Critically Ill Patient. JPEN Parenter. Enter. 2015; 39: 401–9. DOI: 10.1177/0148607114529994
- Van Zanten A.R.H., Sztark F., Kaisers U.X., Zielmann S., Felbinger T.W., Sablotzki A.R. et al. High-protein enteral nutrition enriched with immune-modulating nutrients vs standard high-protein enteral nutrition and nosocomial infections in the ICU: A randomized clinical trial. JAMA. 2014; 312: 514–24. DOI: 10.1001/jama.2014.7698
- Wischmeyer P.E. The glutamine debate in surgery and critical care. Curr. Opin. Crit. Care. 2019; 25: 322–8. DOI: 10.1097/MCC.0000000000000633
- Davis J.S., Anstey N.M. Is plasma arginine concentration decreased in patients with sepsis? A systematic review and meta-analysis. Crit. Care Med. 2011; 39: 380–5. DOI: 10.1097/CCM.0b013e3181ffd9f7
- Luiking Y.C., Poeze M., Ramsay G., Deutz N.E.P. The role of arginine in infection and sepsis. JPEN-Parenter. Enter. 2005; 29: S70–S74. DOI: 10.1177/01486071050290S1S70 55. Wilson J.X., Wu F. Vitamin C in sepsis. Subcell. Biochem. 2012; 56: 67–83. DOI: 10.1007/978-94-007-2199-9_5
- Carr A.C., Rosengrave P.C., Bayer S., Chambers S., Mehrtens J., Shaw G.M. Hypovitaminosis C and vitamin C deficiency in critically ill patients despite recommended enteral and parenteral intakes. Crit. Care. 2017; 21: 300. DOI: 10.1186/s13054-017-1891-y
- Zhang M., Jativa D.F. Vitamin C supplementation in the critically ill: A systematic review and meta-analysis. SAGE Open Med. 2018; 6: 205031211880761. DOI: 10.1177/2050312118807615
- Fowler A.A., Syed A.A., Knowlson S., Sculthorpe R., Farthing D., DeWilde C. et al. Phase I safety trial of intravenous ascorbic acid in patients with severe sepsis. J. Transl. Med. 2014; 12: 32. DOI: 10.1186/1479-5876-12-32
- Spoelstra-de Man A.M.E., Elbers P.W.G., Oudemans-van Straaten H.M. Making sense of early high-dose intravenous vitamin C in ischemia/reperfusion injury. Crit. Care. 2018; 22: 70. DOI: 10.1186/s13054-018-1996-y
- Peeters Y., Vandervelden S., Wise R., Malbrain M.L.N.G. An overview on fluid resuscitation and resuscitation endpoints in burns: Past, present and future. Part 1 – historical background, resuscitation fluid and adjunctive treatment. Anaesthesiol. Intensive Ther. 2015; 47: 6–14. DOI: 10.5603/AIT.a2015.0063
Об авторах
- Бокерия Лео Антонович, академик РАН, президент Центра; ORCID
- Абдулгасанов Рамиз Алиевич, д-р мед. наук, гл. науч. сотр.; ORCID
- Гасымов Эмиль Гадирович, врач-ординатор; ORCID
- Абдулгасанова Мехрибан Рамизовна, врач-соискатель; ORCID